Subscribe to Newsletter
Techniques & Tools Liquid Chromatography, Pharma & Biopharma, Technology

The Road to HPLC2018 Part I: Super Separations

2018 sees the 47th anniversary of the HPLC symposium, which has grown to become the largest and most visible international conference series dedicated to all aspects of liquid-phase separation science and analysis, including mass spectrometry, chromatography, and electrophoresis. As always, HPLC2018 presents an exciting opportunity to learn of cutting-edge research in separation science. The world’s leading experts will deliver presentations on emerging technologies and discuss novel solutions to important problems in pharmaceutical, environmental, and industrial research and development. In addition, vendor workshops and a series of short courses and tutorials will provide outstanding opportunities for newcomers to obtain a solid foundation in the field – and for veterans to update their knowledge. Meanwhile, the exposition will showcase new product launches and innovative products, and the social program will facilitate networking with colleagues from around the world.

Along with the rest of the organizing committee, I am currently in the midst of the exciting, challenging and rewarding task of assembling the conference program. We are delighted to have recruited two outstanding plenary lecturers: Stacey Ma, Vice President at Genentech, will describe the perennially important role of analysis in the pharmaceutical industry, and Richard Smith from the Pacific Northwest National Laboratory will speak on his remarkable recent work on extremely high-resolution ion mobility spectrometry (see tas.txp.to/0717/Smith). The plenaries will set the tone for the rest of the event, in which we aim to cover the most interesting developments from the past year, plus advances that we believe will make a splash in the years to come.

Of course, separations are the primary focus of HPLC2018, and there are a number of areas that deserve special attention. Novel stationary phases with improved properties are continually being developed and commercialized, providing valuable tools for selected analytical problems. Nanoparticle stationary phases provide exciting opportunities for fast and efficient separations. Monoliths enable low backpressure separations, again at high speeds and relatively low pressures. Electrokinetic separations are undergoing a renaissance, particularly when coupled with high-efficiency interfaces with mass spectrometry for metabolomics, glycomics, and proteomic analyses. Finally, multidimensional separations provide powerful tools for the characterization of otherwise intractable samples.

Sample preparation is an important, and sometimes underappreciated, step in analysis. Solid-phase microextraction and other tools can dramatically speed analysis. Perhaps more importantly, they can improve the precision and accuracy of the analysis. And that’s why they will also be a focus next year.

Washington, DC provides easy access for the many pharmaceutical companies located in the US Midwest and East Coast, so an important focus of the conference will be on pharmaceutical analysis of small molecules and biopharmaceuticals. To name just two emerging challenges in the industry, continuous flow synthesis of small molecule drugs presents new difficulties for on-line analysis, while the characterization of drug–antibody conjugates is of increasing importance in biopharma.

Proteomics and metabolomics are enabled by chromatographic and electrophoretic separations coupled with powerful mass spectrometric detection. Increasingly complex samples are routinely being analyzed, and issues of throughput and data interpretation are important challenges. The separation of intact proteins is valuable not only for top-down analysis of complex samples but also for analysis of intact antibodies in the biopharma industry. As a new topic, characterization of microbiomes presents interesting and formidable challenges to the bioanalysis community.

Microfabricated separation and sample preparation tools are now commercialized and finding routine use in the laboratory. However, many groups are pushing the state-of-the-art in microfabrication and nanofabrication, which will have a profound impact on separation science. Advances in microfabricated cell culture coupled with on-line sample manipulation and separation provide powerful tools for biology and pharmaceutical analysis.

An interesting new topic in the food and environmental field is cannabis analysis – a real growth industry as certain jurisdictions legalize its medical and recreational uses. Extraction of active components for incorporation into edible products is a surprising application of supercritical fluids. Furthermore, the characterization of psychoactive materials is important, and the identification of pesticide contaminants is of growing interest.

This is the first of a series of short articles in The Analytical Scientist, written by leaders in the field, which will describe important problems and exciting applications in separation science in the run-up to HPLC2018. We hope these articles will provide fodder for discussion at the event, and whet your appetite for the many excellent sessions we are assembling.

HPLC 2018 takes place on 29 July to 2 August in Washington, DC. HPLC2018.org

Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

About the Author
Norman Dovichi

Norm is the Grace-Rupley Professor of Chemistry and Biochemistry, at the University of Notre Dame, Indiana, USA. His postdoctoral fellowship at Los Alamos Scientific Lab introduced the concept of single molecule detection, leading to the development of a capillary array DNA sequencer that became the workhorse tool used in the human genome project.

Related Application Notes
Safer AAV Analysis with Non-toxic AEX Method

| Contributed by Tosoh

Non-targeted profiling of polar metabolites in human plasma

| Contributed by YMC

High Sensitivity allergen detection in wine samples

| Contributed by YMC

Related Product Profiles
The fine Art of Method Development

| Contributed by Shimadzu Europa

Higher Peaks – Clearly.

| Contributed by Shimadzu Europa

Compact with countless benefits

| Contributed by Shimadzu Europa

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register