APPLICATION NOTE

Fast analysis of isoflavonoids in food

As soy is the most important source of vegetable oil worldwide, it contributes essentially to a balanced diet. Secondary components such as isoflavonoids have a significant positive effect on the hormonal balance. However, adverse effects can occur. The following method for a fast and robust separation of isoflavonoids will facilitate the analysis of these food ingredients.

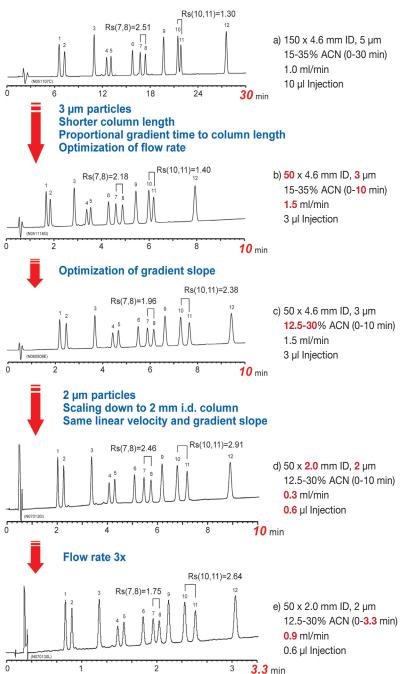
Structures of 12 isoflavones in soybeans

glycosides CH:OR3					aglycones		
	ноон			ОН	HO O O		
Compound	(abbr .)	R1	R2	R ₃	Compound (abbr.) R1 R		
Daidzin	(D)	Н	Н	Н	Daidzein (De) H H		
Glycitin	(GI)	Н	OCH ₃	Н	Glycitein (Gle) H OC		
Genistin	(G)	OH	Н	Н	Genistein (Ge) OH H		
6"-O-Acetyldaidzin	(AD)	Н	Н	COCH ₃			
6"-O-Acetylglycitin	(AGI)	Н	OCH ₃	COCH ₃			
6"-O-Acetylgenistin	(AG)	OH	Н	COCH ₃			
6"-O-Malonyldaidzir	n (MD)	Н	Н	COCH ₂ COOH			
6"-O-Malonylglycitir	n (MGI)	Н	OCH ₃	COCH ₂ COOH			
6"-O-Malonylgenisti	n (MG)	ОН	Н	COCH ₂ COOH			

Figure 1

Influence of acetic acid concentration on soy isoflavone separation

The isoflavonoids were extracted from the crude matrix by stirring with a 50:50 water/ethanol mixture at room temperature for one hour. After filtration (filter paper No. 5A) the samples were prepared for HPLC analysis by use of a syringe filter (0.2 µm). Initial experiments showed very quickly that the method would be successful using gradient elution with water/acetonitrile with acetic acid to control pH (see figure 2, chromatogram a). Further


optimisation was achieved by varying the acetic acid content. Peaks 10 and 11 (Glyciteine and 6"-O-acetylgenistine) were baseline separated with a high percentage of acetic acid. However, under these conditions the resolution of peaks 7 and 8 (6"-O-Acetylglycitine and 6"-OMalonylgenistine) was poor. Reduction of the acetic acid to 3% resulted in near baseline separation of all 7 compounds (see figure 2, chromatogram c).

APPLICATION NOTE

Fast analysis of isoflavonoids in food

Method transfer from conventional LC to ultra-fast LC

The analysis time of 30 min could be reduced substantially by conventional means of reducing particle size and column dimension (3 μ m, 50 x 4.6 mm ID). To get the same results in terms of the chromatographic behaviour it is of importance to keep a constant gradient volume. Figures 3a and b show the method transfer to a 50 x 4.6 mm ID column. Increasing the flow rate to 1.5 ml/min was necessary to maintain the resolution and elution profile. Adjusting the gradient profile (figures 3b and c) led to a baseline resolution of the critical peak pair 10 and 11.

This conventional method was then transferred to ultra-fast analysis on a JASCO high pressure system using 2 µm particles. After modifying the chromatographic parameters the flow rate was again increased which reduced the analysis time in total by a factor of 10 (see figures 3d and e).

1. D	7. AGI
2. GI	8. MG
3. G	9. De
4. MD	10. Gle
5. MGI	11. AG
6. AD	12. Ge

Column: Hydrosphere C18 (12 nm)

Temp.: 35 °C

Detection: UV at 254 nm

Eluent: A: water / acetic acid (100/3)
B: acetonitrile / acetic acid (100/3)

Conclusion

Figure 3

The aim of this study was the development of an ultra-fast method for the determination of isoflavonoids in soy-containing foods. The method transfer from conventional to ultra-fast HPLC systems was successful when using YMC UltraHT Hydrosphere C18 with 2 µm particle size.