
Dramatic Efficiency Gains in Untargeted Absolute 
Quantification of Cellular Metabolites with Advanced 
Machine Learning

Introduction

The quantitative profiling of metabolites (i.e., 
metabolomics) represents the result of genetics, 
environment, and metabolism and thus provides a 
valuable biological readout of an organism.¹ Mass 
spectrometry (MS) has emerged as the method 
of choice for high-content metabolomics, given 
its ability to rapidly assess diverse small molecule 
chemistries over a wide dynamic range.² Depending 
on the goal of a metabolomics study, investigators 
typically choose between a “targeted” approach to 
achieve absolute quantitation of a relatively short list 
of known compounds and an “untargeted” approach 
to characterize as many known and unknown 
biochemicals with relative abundance (i.e., fold-
change differences among study groups).³

Traditional MS methods for targeted metabolomics 
are laborious, costly, and time-consuming. 
Isotopically labeled pure standards must be 
purchased or synthesized 
for each metabolite under 
investigation. De novo 
synthesis significantly 
ratchets the costs and 
time to a cost often 
prohibitive for research labs. 
Following pure standard 
procurement, subsequent 
calibration curves must be 
generated, requiring the 
dedication of staff trained 
in analytical chemistry. 
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Furthermore, researchers are limited to investigating 
the biochemical space included in the targeted list 
of metabolites, prohibiting hypothesis-generating 
study design and the opportunity for novel discovery.
To overcome the limitations of targeted MS-based 
metabolomics, we developed Pyxis, which eliminates 
the need for stable isotope-labeled standards, 
calibration curve preparation, and traditional method 
development. Pyxis comprises a rapid machine-
learning model that uses the signals from a small 
number of matrix-independent universal calibrators 
known as StandardCandles™. Data are analyzed by a 
standardized LC-MS method and processed through 
cloud-based software to annotate metabolite 
identities and absolute concentrations directly from 
the raw MS data. 

In this study, we benchmark Pyxis’ ability to rapidly 
analyze several sample matrices and present a case 
study identifying relevant biomarkers in human 
biofluids.

Ana S. H. Costa, Craig Knisley, Devesh Shah, Timothy Kassis, Mimoun Cadosch Delmar, Jennifer M. Campbell, 
& Jack Geremia. Matterworks, Inc., Somerville, MA, USA.

Table 1. Sample matrices and sample-to-solvent ratio dilutions used to generate analyte con-
centration ranges. AF=Amniotic Fluid; CSF= Cerebrospinal Fluid; DBS= Dried Blood Spots; NIST 
1950= Human plasma (NIST SRM 1950); Saliva= Human Saliva; Urine= Human Urine; CHO Cells= 
Chinese Hamster Ovary Cells; HPLM= Human plasma-like medium; CD DH44= Cell culture 
medium (CD DG44)
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Materials and Methods

Metabolites were extracted from mammalian cells, 
cell culture media, dried blood spots, and human 
biofluids (cerebrospinal fluid, amniotic fluid, urine, 
saliva, and blood plasma) using an 80% organic 
solution. Analyte concentration ranges were 
achieved using different sample-to-solvent ratios 
(Table 1).  
 
An organic solution (methanol:acetonitrile:water, 
50:30:20 v/v/v) spiked with 87 internal standards was 
used to precipitate proteins and isolate metabolites. 
Extracts were mixed with a StandardCandles™ 
solution to compare the traditional absolute 
quantification method and Pyxis (Figure 1). 
Calibration curves comprising mixtures of pure 
standards were prepared and analyzed in parallel. 
Four μl of each extract were analyzed on a Transcend 
LX-2 multichannel UHPLC system coupled to an 
Orbitrap Exploris 120 mass spectrometer (Thermo 
Fisher Scientific). HILIC separation was achieved with 
an Atlantis Premier BEH Z-HILIC column (2.5 mm, 2.1 
x 50 mm; Waters Corporation) and a mobile phase 
consisting of 20 mM ammonium carbonate with 

0.25% (v/v) ammonium hydroxide (pH=9.6, solvent 
A), and acetonitrile (solvent B). High-resolution MS1 
spectra were acquired for 6.7 minutes in polarity 
switching mode.⁴

For the analytical procedure referred to as the 
“conventional method,” TraceFinder™ software 
(Thermo Fisher Scientific) was used to calculate the 
absolute quantitation of analytes using internal 
standards and external calibration curves. Briefly, 
TraceFinder reports compound quantitation 
by integrating the area under the peak in the 
chromatogram for the respective monoisotopic 
molecular ion. In parallel, the raw MS files were 
analyzed with Pyxis (version 1.4.1; Matterworks, 
Inc., Somerville, MA), and absolute metabolite 
concentrations were reported. 

Results

The conventional method, based on spiked-in 
isotopically labeled standards, quantified the 87 
endogenous metabolites over a concentration range 
of 0.05 to 30 µM. These endogenous metabolite 
concentrations were used to benchmark Pyxis 
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Figure 1. Data acquisition and analysis steps used for both traditional and Pyxis–based absolute metabolite 
quantitation. Pyxis standardizes LC-MS and reduces weeks of method development, calibration, and data 
analysis to minutes.
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predictions among 
27 samples across 
nine sample 
matrices. Pyxis 
successfully 
quantified all 87 of 
these biochemicals, 
ranging from 23 
metabolites in the 
fresh cell culture 
media to 73 in the 
CHO cell pellets 
(Table 2). 
A linear regression 
analysis was applied 
to determine how closely Pyxis predicted the 
metabolite absolute concentrations within each 
sample matrix. Pyxis' results were compared with the 
concentrations determined using the conventional 
stable isotope results. A slope of 1 indicates perfect 1:1 
alignment, while an R2 of 1 represents perfect linear 
correlation. A summary of the analysis is presented 
in Table 2. Overall, Pyxis predictions achieved median 
slopes ranging from 0.76 for urine to 1.38 for dried 
blood spots and median R2 ranging from 0.60 for 
dried blood spots and 0.87 for amniotic fluid (Figure 
2A). 

A diverse array of analytes representing multiple 
major biochemical pathways was chosen to 
demonstrate Pyxis' flexibility. The selected 
metabolites were grouped into nine primary 
pathways, and metabolite detection above the 
LoQ varied depending on the sample matrix. 
Pyxis exhibited high accuracy in identifying and 
quantitatively determining metabolites across the 
different metabolic pathways (Figure 2B).  

These results demonstrate that Pyxis can annotate 
analyte concentrations in several human biofluids, 
CHO cells, and cell growth medium in minutes 
without tedious and expensive stable isotope-based 
methodology. Pyxis offers the absolute quantitation 
of diverse metabolites and delivers results from 
a sample set within days rather than weeks. A 

comparable conventional targeted quantitative 
method costs an order of magnitude more and can 
take a month or longer to deliver results.  

Biomarkers in human health studies 

Metabolites uniquely report on genetic function 
and environmental influences, including diet, 
microbiome, and exposure.⁷ Diverse coverage 
of the biochemical space offered by traditional 
untargeted metabolomics affords scientists the 
best opportunity to identify biomarkers of interest 
in human populations. While relative abundance 
measurements can provide clues as to the 
significance of potential biomarkers, they necessarily 
require a control or time-zero cohort for comparison, 
which is not always available in a research study, 
drives up costs, and extends timelines. Absolute 
concentrations of metabolite biomarkers hasten 
their adoption in translational and clinical medicine. 
For example, “normal” concentration windows of 
blood metabolic markers (e.g., glucose, bilirubin, 
creatinine, etc.) and complete blood counts drive 
their clinical utilization and further enable individual 
health assessments.5,6 

We evaluated Pyxis' ability to identify and quantify 
metabolites in several human biospecimen types 
routinely used for biomarker studies (Table 2). 
Among all the human matrices, Pyxis quantified all 
20 nominal amino acids. To simplify the presentation 
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Table 2. Number of metabolites and linear regression analysis for Pyxis concentration compared to 
the conventional method concentration. AF=Amniotic Fluid; CSF= Cerebrospinal Fluid; DBS= Dried 
Blood Spots; NIST 1950= Human plasma (NIST SRM 1950); Saliva= Human Saliva; Urine= Human Urine; 
CHO Cells= Chinese Hamster Ovary Cells; HPLM= Human plasma-like medium; CD DH44= Cell culture 
medium (CD DG44)



EFFICIENCY GAINS IN QUANTITATIVE METABOLOMICS WITH 
MACHINE LEARNING

WHITE PAPER

7© 2025 Matterworks, Inc | 444 Somerville Ave, Somerville MA 02143 | www.matterworks.ai

Figure 2. Overview of Pyxis predictions versus the conventionally determined analyte concentrations among (A) 
nine evaluated matrices and (B) nine grouped metabolic pathways. Sample matrices are colored according to 
the legend. 
*Note the analyte concentrations of “Neurotransmitters & Hormones” are less abundant and thus an order of 
magnitude lower than the indicated axes.
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of the results, we focused on amino acids quantified 
in standard reference plasma, amniotic fluid, and 
urine.   

Amino acids and their secondary metabolites 
inform on nutritional status, and abnormal levels are 
associated with several chronic and cardiovascular 
diseases. For example, higher circulating glycine 
levels may protect against developing coronary 
heart disease and insulin resistance, the latter of 
which may lower the risk of type 2 diabetes.7,8 Pyxis-
predicted absolute concentrations of glycine were 
in good agreement with the conventional method 
among the standard reference plasma, amniotic 
fluid, and urine sample matrices (Figure 3A). 
 
Tryptophan is an essential amino acid that must be 
consumed in the human diet. The metabolism of 
tryptophan to kynurenine and melatonin by human 
enzymes and indole-related catabolites by bacteria 
are well-documented mechanisms involved in 

immune modulation, sleep cycles, and microbiome-
potentiated health effects.9,10 For standard reference 
plasma, amniotic fluid, and urine biospecimens, 
Pyxis predicted the concentration dilutions of 
tryptophan (Figure 3B) and kynurenine (Figure 3C) 
in good agreement with conventional method data. 

Kynurenine levels were at relatively low abundance, 
particularly in amniotic fluid, yet Pyxis robustly 
quantified the amino acid in every dilution of these 
three matrices. 
 
These results indicate that the Pyxis methodology 
represents a feasible avenue for determining the 
levels of physiologically essential biochemicals in 
human biomarker studies.

Conclusions 
 
In this study, we evaluated the ability of Pyxis, an 
ML-based cloud platform, to annotate metabolite 
identity and absolute concentrations in diverse 
sample matrices using conventional stable isotope-
labeled standard methodology as a benchmark. 
Overall, Pyxis successfully annotated the identity and 
concentrations of the metabolites in all nine sample 
types measured, including human-derived matrices, 
cell pellets, and fresh cell media. The predicted 

concentrations agreed 
with the conventional 
method based on 
laborious, technically 
demanding, and 
expensive isotope 
labeling and 
data processing. 
Furthermore, the 
Pyxis metabolite 
identifications and 
concentrations were 
available within minutes 
of uploading the raw 
data to the platform. 
Pyxis' annotated 
metabolite identities 
and concentrations 

offer a novel and rapid metabolomics workflow 
applicable to various biomedical applications, 
including bioprocess optimization, drug discovery, 
and translational and clinical biomarker studies.
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Figure 3. Linear regression analysis for selected amino acids in human biofluids. (A) Glycine, (B) 
Tryptophan, (C) Kynurenine. Amniotic fluid (blue), standard reference plasma (red), and urine (or-
ange) samples are indicated with associated linear regression fit statistics.
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