

### ASMS 2019 TP 161

Sanket Chiplunkar<sup>1</sup>, Dheeraj Handique<sup>1</sup>, Durvesh Sawant<sup>1</sup>, Prashant Hase<sup>1</sup>, Nitish Suryawanshi<sup>1</sup>, Aseem Wagle<sup>1</sup>, Ajit Datar<sup>1</sup>, Jitendra Kelkar<sup>1</sup>, Pratap Rasam<sup>1</sup>, Satyendra Singh<sup>2</sup> and Sunil Singh<sup>2</sup> 1 Shimadzu Analytical (India) Pvt. Ltd., 1 A/B Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India 2 Shimadzu Analytical (India) Pvt. Ltd., Plot No-2, Sethi Chambers, D.D.A. Local shopping centre, MOR Land New Rajinder Nagar, New Delhi-110060, India

PO-CON1877E

## Introduction

VOC's in drinking water include compounds already present in natural water sources, as well as contaminants produced by industry and during daily activities. These are pollutants from agricultural activity, water purification chemicals, pesticides used for public health initiatives and pharmaceutical products.

VOC's are known to be responsible for many human health hazards. In general, exposure to low levels of certain VOC's over a long period of time may lead to impaired immune system function, liver damage and increased risk of cancer. At elevated levels, even short-term exposure to certain VOC's can cause central nervous system depression. As a result, in order to maintain a fixed drinking water quality, each country sets regulations and analyzes for chemical contaminants in drinking water. In India, Bureau of Indian Standard (BIS) has established safe drinking water standards.

This study reports a sensitive analytical method using Shimadzu GCMS-QP2020 NX single quadrupole system with HS-20 dynamic headspace autosampler (Figure 1) to determine 51 VOC's at trace level.



Figure 1. GCMS-QP2020 NX with HS-20 headspace autosampler

# Methods of Analysis

#### Procedure

- Standard Stock Solution : VOC's standard was procured from Restek<sup>®</sup>. Stock solution of 100 ppm was prepared in high purity grade water.
- Calibration Levels:

Standard stock solution was further diluted with high purity grade water (JT Baker) to prepare the concentration levels of 0.025 ppb, 0.050 ppb, 0.100 ppb, 0.250 ppb and 0.500 ppb. 10.0 mL of each standard solution was then transferred to 20 mL headspace vial and calibration curve was plotted. • Sample Preparation:

About 10.0 mL of commercially available packaged drinking water was taken in headspace vial.

• Spike Sample Preparation:

For recovery studies, 10.0 mL of commercially available packaged drinking water was spiked with VOC's Standard solution at 0.05 ppb, 0.075 ppb and 0.100 ppb concentration levels.

### **GC-MS** Analytical Conditions

The analysis was carried out on Shimadzu GCMS-QP2020 NX equipped with HS-20 headspace sampler as per the conditions given in Table 1.

Table 1. Analytical conditions

| Chromatographic parar        | meters                                  |                  |                 |  |  |  |  |
|------------------------------|-----------------------------------------|------------------|-----------------|--|--|--|--|
| Column                       | : VMS (60 m L x 0.45 mm l.D. x 2.55 μm) |                  |                 |  |  |  |  |
| Injection Mode               | : Split                                 |                  |                 |  |  |  |  |
| Split Ratio                  | : 3                                     |                  |                 |  |  |  |  |
| Carrier Gas                  | : Helium                                |                  |                 |  |  |  |  |
| Flow Control Mode            | : Linear Velocity                       |                  |                 |  |  |  |  |
| Linear Velocity              | : 44.0 cm/sec                           |                  |                 |  |  |  |  |
| Column Flow                  | : 3.0 mL/min                            |                  |                 |  |  |  |  |
| Injection Volume             | : Not applicable                        |                  |                 |  |  |  |  |
| Total Program Time           | : 40.00 min                             |                  |                 |  |  |  |  |
| Column Temp. Program         | Rate (°C /min)                          | Temperature (°C) | Hold time (min) |  |  |  |  |
|                              | -                                       | 35.0             | 5.00            |  |  |  |  |
|                              | 5.00                                    | 150.0            | 2.00            |  |  |  |  |
|                              | 15.00                                   | 230.0            | 4.67            |  |  |  |  |
| Headspace parameters         |                                         |                  |                 |  |  |  |  |
| HS Mode                      | : Trap                                  |                  |                 |  |  |  |  |
| HS Oven Temp.                | : 60.0 °C                               |                  |                 |  |  |  |  |
| Sample Line Temp.            | : 200.0 °C                              |                  |                 |  |  |  |  |
| Transfer Line Temp.          | : 220.0 °C                              |                  |                 |  |  |  |  |
| Gas Pressure                 | : 50 kPa                                |                  |                 |  |  |  |  |
| Equilibrating Time           | : 30 min                                |                  |                 |  |  |  |  |
| Load Time                    | : 0.2 min                               |                  |                 |  |  |  |  |
| Injection Time               | : 40.0 min                              |                  |                 |  |  |  |  |
| Needle Flush Time            | : 40.0 min                              |                  |                 |  |  |  |  |
| GC Cycle Time                | : 55.0 min                              |                  |                 |  |  |  |  |
| Trap Cooling Temp            | : -10.0 °C                              |                  |                 |  |  |  |  |
| Trap Desorb Temp.            | : 150.0 °C                              |                  |                 |  |  |  |  |
| Multi Injection Count        | : 10                                    |                  |                 |  |  |  |  |
| Mass Spectrometry parameters |                                         |                  |                 |  |  |  |  |
| Ion Source Temp.             | : 220.0 °C                              |                  |                 |  |  |  |  |
| Interface Temp.              | : 230.0 °C                              |                  |                 |  |  |  |  |
| Ionization Mode              | : EI (Electron Ionization)              |                  |                 |  |  |  |  |
| Acquisition Mode             | : SCAN                                  |                  |                 |  |  |  |  |

### Method development

The standards for many of the VOC's commonly found in water, measured in parts per billion(ppb). Hence, it is imperative to have a method to quantitatively evaluate their presence at trace levels in environmental water samples. Analysis of VOC's in water using HS-20 trap (dynamic headspace) with GCMS was as an alternative for purge & trap GCMS technique.

#### Key Features of GCMS-QP2020 NX equipped with HS-20 Headspace

- With Peltier cooling, trap column (Tenax TA) was cooled up to - 10.0 °C for efficient adsorption of high volatile components from the water sample
- With multiple injection count feature, VOCs from water sample were extracted for 10 times from same vial and concentrate on the trap column (Tenax TA)
- ASSP<sup>™</sup> (Advanced Scanning Speed Protocol) enables high-speed scan and data acquisition for accurate quantitation at 20,000 u/sec
- LabSolutions Insight significantly improves the efficiency of reporting for multi-component analysis

### Results

About 1 ppm standard was analysed in scan mode and the components were identified with the help of NIST-17 library. Further retention time and SIM ions were determined from the scan data.. The quantitative analysis of commercially available package bottled water sample was done by using above method. The data was statistically evaluated with respect to linearity, precision and recovery.

Linearity for standards ranging from 0.025 ppb, 0.050 ppb, 0.100 ppb, 0.250 ppb and 0.500 ppb concentration level was plotted with weighted linear regression (1/C). Linear response with  $r^2 \ge 0.99$  was obtained for most of the components.



Figure 2. Linearity overlay for m-Xylene

The Relative Standard deviation (RSD) for six replicate injections of 0.100 ppb VOC's standard were found to be less than 20% for most of the components.

Since VOC's were not detected in package water bottle sample, recovery studies at various concentration levels were carried out by spiking standard solutions in same water sample. For all the levels, recovery was found to be in between 70% to 130% for most of the components.

Statistical data of linearity and accuracy were listed in table 2, showed that the method was sensitive, accurate and reproducible.

Chromatographic overlay of all linearity levels, calibration curve and quantitative chromatogram for m-Xylene were shown in figure 2,3 and 4.



Figure 3. Calibration curve for m-Xylene





Figure 4. Quantitative chromatogram for m-Xylene

| No. | Name                      | Retention Time (min) | Linearity (r2) | % Accuracy at 0.100 ppb |
|-----|---------------------------|----------------------|----------------|-------------------------|
| 1   | Dichloromethane           | 6.540                | 0.9966         | 87                      |
| 2   | cis-1,2-Dichloroethene    | 6.892                | 0.9958         | 92                      |
| 3   | 1,1-Dichloroethane        | 8.219                | 0.9992         | 88                      |
| 4   | trans-1,2-Dichloroethene  | 9.358                | 0.9978         | 85                      |
| 5   | 2,2-Dichloropropane       | 9.567                | 0.9833         | 79                      |
| 6   | Bromochloromethane        | 9.766                | 0.9992         | 97                      |
| 7   | Chloroform                | 9.979                | 0.9997         | 102                     |
| 8   | Carbon tetrachloride      | 10.220               | 0.9909         | 105                     |
| 9   | 1,1,1-Trichloroethane     | 10.360               | 0.9972         | 99                      |
| 10  | 1,1-Dichloropropene       | 10.648               | 0.9934         | 85                      |
| 11  | Benzene                   | 11.180               | 0.9990         | 89                      |
| 12  | 1,2-Dichloroethane        | 11.597               | 0.9966         | 99                      |
| 13  | Dibromomethane            | 13.373               | 0.9993         | 96                      |
| 14  | 1,2-Dichloropropane       | 13.620               | 0.9997         | 110                     |
| 15  | Bromodichloromethane      | 13.793               | 0.9988         | 91                      |
| 16  | cis-1,3-Dichloropropene   | 15.254               | 0.9957         | 93                      |
| 17  | Toluene                   | 15.829               | 0.9930         | 101                     |
| 18  | Tetrachloroethylene       | 16.719               | 0.9986         | 114                     |
| 19  | trans-1,3-Dichloropropene | 16.843               | 0.9997         | 91                      |

#### Table 2. Analytical results



| 20<br>21 | 1,1,2-Trichloroethane         | 17.210 |        |     |
|----------|-------------------------------|--------|--------|-----|
| 21       |                               | 17.210 | 0.9940 | 86  |
|          | Dibromochloromethane          | 17.618 | 0.9974 | 92  |
| 22       | 1,3-Dichloropropane           | 17.867 | 0.9997 | 99  |
| 23       | 1,2-Dibromoethane             | 18.156 | 0.9980 | 98  |
| 24       | Chlorobenzene                 | 19.533 | 0.9995 | 95  |
| 25       | o-Xylene/ Ethyl Benzene       | 19.678 | 0.9916 | 90  |
| 26       | 1,1,1,2-Tetrachloroethane     | 19.724 | 0.9994 | 83  |
| 27       | p-Xylene                      | 20.073 | 0.9996 | 89  |
| 28       | m-Xylene                      | 21.187 | 0.9985 | 93  |
| 29       | Bromoform                     | 21.303 | 0.9982 | 103 |
| 30       | Styrene                       | 21.328 | 0.9975 | 117 |
| 31       | Isopropylbenzene              | 22.055 | 0.9965 | 91  |
| 32       | Bromobenzene                  | 22.989 | 0.9988 | 99  |
| 33       | n-Propylbenzene               | 23.199 | 0.9947 | 95  |
| 34       | 1,1,2,2-Tetrachloroethane     | 23.389 | 0.9993 | 98  |
| 35       | 2-Chlorotoluene               | 23.550 | 0.9979 | 82  |
| 36       | 1,2,3-Trichloropropane        | 23.700 | 0.9964 | 89  |
| 37       | 1,2,4-Trimethylbenzene        | 23.782 | 0.9968 | 93  |
| 38       | 4-Chlorotoluene               | 24.018 | 0.9967 | 96  |
| 39       | tert-Butylbenzene             | 24.636 | 0.9959 | 102 |
| 40       | 1,3,5-Trimethylbenzene        | 24.855 | 0.9969 | 111 |
| 41       | sec-Butylbenzene              | 25.152 | 0.9909 | 95  |
| 42       | p-Isopropyltoluene (p-Cymene) | 25.610 | 0.9925 | 97  |
| 43       | 1,4-Dichlorobenzene           | 25.676 | 0.9928 | 110 |
| 44       | 1,3-Dichlorobenzene           | 25.926 | 0.9914 | 119 |
| 45       | n-Butylbenzene                | 26.826 | 0.9952 | 96  |
| 46       | 1,2-Dichlorobenzene           | 27.132 | 0.9984 | 88  |
| 47       | 1,2-Dibromo-3-chloropropane   | 29.606 | 0.9999 | 83  |
| 48       | 1,2,3-Trichlorobenzene        | 31.794 | 0.9981 | 92  |
| 49       | Hexachlorobutadiene           | 31.808 | 0.9935 | 99  |
| 50       | Naphthalene                   | 32.611 | 0.9934 | 101 |
| 51       | 1,2,4-Trichlorobenzene        | 33.043 | 0.9977 | 95  |

Table 2. Analytical results



## Conclusion

A sensitive, reproducible and accurate method was successfully developed for guantitative determination of VOCs in commercially available packaged drinking water sample by using Shimadzu GCMS-QP2020 NX with HS-20 headspace autosampler.

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.



Shimadzu Corporation

www.shimadzu.com/an/

#### For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "@". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: July, 2019