



# Analysis of Volatile Organic Compounds Using US EPA Method 8260C by CDS 7000 Series Automated Purge and Trap Concentrator

## Application Note

Environmental

### Abstract

The analytical performance of the CDS 7000 Series Purge and Trap is demonstrated for the EPA Method 8260C by GC/MS analysis.

Author:

Xiaohui Zhang

### Introduction

CDS Analytical's 7000 Series Purge and Trap System is the world's finest Purge and Trap automation solution. This instrumentation fully automates Purge and Trap for the trace measurement of purgeable volatile organic compounds (VOCs) in water, compliant with the official International Standard Organization method DIN-EN ISO 15009, U.S. EPA method 500 and 8000 series for VOCs in water. In this application note data is presented that the 7000 Series Purge and Trap System exceeds the performance criteria set of EPA Method 8260C.

### Experimental Setup

A 7000 Series Purge and Trap System was used to collect the data. The Purge and Trap method parameters are shown in Table 1 which are standard for the analysis of VOCs defined in the EPA Method 8260C. CDS's proprietary Type X trap was used.

|                            |            |
|----------------------------|------------|
| Valve Oven Temperature     | 130 °C     |
| Transfer Line Temperature  | 130 °C     |
| Standby Flow               | 10 mL/min  |
| Trap Ready Temperature     | 35 °C      |
| Wet Trap Ready Temperature | 45 °C      |
| Sparge Vessel Heater       | On         |
| Purge Time                 | 11 min     |
| Purge Flow                 | 40 mL/min  |
| Purge Temperature          | 40 °C      |
| Dry Purge Time             | 2 min      |
| Dry Purge Flow             | 200 mL/min |
| Dry purge Temperature      | 35 °C      |
| Foam Sensor                | On         |
| <b>Desorb Parameters:</b>  |            |
| Water Rinse Volume         | 5 mL       |
| Number of Water Rinses     | 3          |
| Over Flow Sensor           | On         |
| Desorb Preheat Temperature | 245 °C     |
| GC Start Signal            | Desorb     |
| Desorb Time                | 6 min      |
| Desorb Drain Flow          | 250 mL/min |
| Desorb Temperature         | 250 °C     |
| <b>Bake Parameters:</b>    |            |
| Bake Time                  | 4 min      |
| Bake and Vessel Flow       | 200 mL/min |
| Trap Bake Temperature      | 260 °C     |
| Wet Trap Bake Temperature  | 260 °C     |

Table 1. Purge and Trap Method Parameters.

A Shimadzu single quad GCMS-QP 2010 was used. GC/MS conditions are listed in Table 2. Carrier gas was supplied to the 7000 Series Purge and Trap and a heated transfer line from the 7000 Series Purge and Trap concentrator was plumbed into the carrier supply line of the split/spitless inlet.

|                               |                                         |             |           |
|-------------------------------|-----------------------------------------|-------------|-----------|
| Gas Chromatograph:            | Shimadzu GC 2010                        |             |           |
| Analytical Column:            | Rtx-VMS (30 m x 0.25 mm x 1.40 $\mu$ m) |             |           |
| Injector Temperature:         | 135 °C                                  |             |           |
| Carrier Gas:                  | Helium @ 1.0 mL/min                     |             |           |
| Split Ratio:                  | 40:1                                    |             |           |
| Oven Program:                 | Rate                                    | Temperature | Hold Time |
|                               | 35 °C                                   | 4 min       |           |
|                               | 5 °C/min                                | 90 °C       | 0         |
|                               | 12 °C/min                               | 150 °C      | 0         |
|                               | 30 °C/min                               | 220 °C      | 2.67 min  |
| Mass Spectrometer:            | Shimadzu GCMS-QP 2010                   |             |           |
| GC Transfer Line Temperature: | 220 °C                                  |             |           |
| Ion Source Temperature:       | 200 °C                                  |             |           |
| Function Type:                | Full Scan                               |             |           |
| Solvent Delay:                | 1.0 min                                 |             |           |
| Scan Range:                   | m/z 35-260                              |             |           |
| Scan Time:                    | 0.3 sec                                 |             |           |
| Scan Speed:                   | 833                                     |             |           |

Table 2. GCMS Conditions.

The internal and external calibration standards were diluted from stock solutions using high precision Hamilton syringes and Class-A volumetric flasks. The external calibration standard contained a 50 component 8260 calibration mix (Supelco #500607) and a 6 component 502.2 calibration gas mix (Supelco #47408). The external standards were diluted to concentrations of 200  $\mu$ g/L and 5  $\mu$ g/L with deionized water, then added to two separate 40 mL VOC vials until full. The internal standard was a 3 component 8260 internal standard mix (Supelco #CRM861183) mixed with 4 component VOA surrogate (Supelco #861135) diluted to a concentration of 25  $\mu$ g/L. 5 mL of this internal standard was added to the internal standard module reservoir #1 (2 reservoirs supported). The calibration levels used in this study are listed in Table 3.

| Calibration Level | Concentration ( $\mu$ g/L) |
|-------------------|----------------------------|
| 1                 | 0.5                        |
| 2                 | 1.5                        |
| 3                 | 5                          |
| 4                 | 20                         |
| 5                 | 60                         |
| 6                 | 200                        |

Table 3. Calibration Levels.

## Results and Discussion

Figure 1 depicts the Total Ion Chromatogram (TIC) of a 200  $\mu$ g/L calibration standard with internal standard and surrogates. All of the analytes are adequately resolved chromatographically. The chromatogram of the 6 gases is enlarged in the insert in order to show the excellent separation and peak shapes.

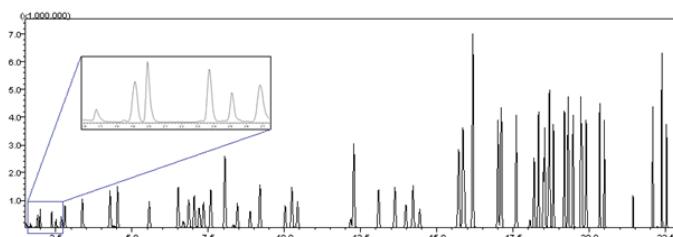



Figure 1. TIC of 8260C volatile organic standard mix at 200  $\mu$ g/L with enlarged chromatogram of the 6 gasses.

Data summary Table 4 lists the results for Retention Time (RT), Average Relative Response Factors (Avg RRF), Percent Relative Standard Deviation (% RSD) of the initial calibration, Method Detection Limits (MDL), along with method accuracy as Percent Recovery (% Rec) and as % RSD. All analytes exceed the EPA 8260C method requirements. MDL were determined by analyzing eleven replicate samples at a concentration of 1.0  $\mu$ g/L. Precision and accuracy of recovery were measured by analyzing four replicates at a concentration of 5  $\mu$ g/L.

The truncated TICs (18.5 min to 20 min) in Figure 2 illustrate the excellent repeatability at low concentration (1  $\mu$ g/L). Figure 3 shows the six gases primary ion peaks at 0.5  $\mu$ g/L concentration.

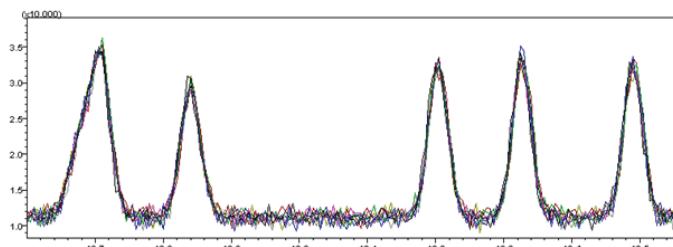



Figure 2. TICs overlaid from 18.5 min to 20 min at 1  $\mu$ g/L concentration.

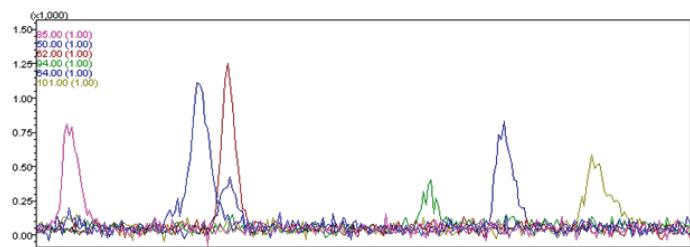



Figure 3. Six gases primary ion peaks EIC (Extracted Ion Chromatogram) at 0.5  $\mu$ g/L concentration.

2  $\mu$ L of the pre-mixed internal standard solution was precisely introduced to the sample, regardless water or soil, by the autosampler through the internal standard addition function. The reproducibility data from water samples and soil samples are shown in Table 5. The excellent RDS < 2.4% and <2.9% are reported for water mode and soil mode, respectively. Figure 4 is the time-shifted overlap of 8 1,4-Dichlorobenzene-d4 runs using the internal standard module.

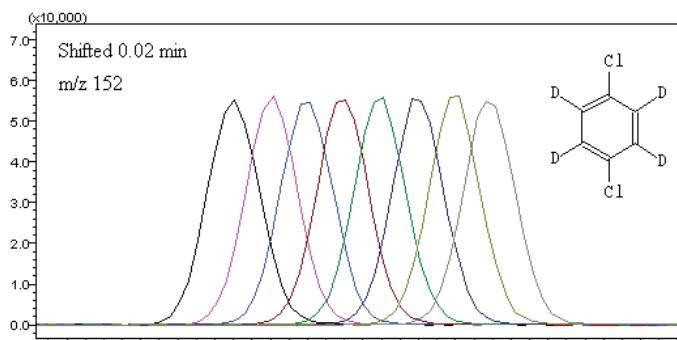



Figure 4. Overlap of eight 1,4-Dichlorobenzene-d4 runs from the internal standard module. The retention time of each peak has been shifted 1.2 seconds to show the consistency of the peak shape.

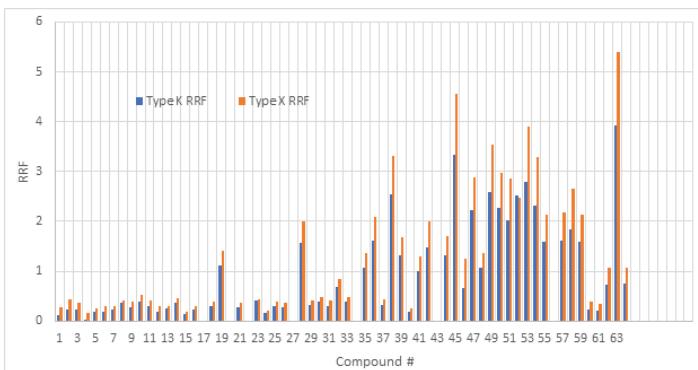



Figure 5. RRF Comparison between Type X and Type K.

Although all the data above was collected in a 7000C with a CDS proprietary type X trap, a comparison test was performed against the regular type K (Vocarb 3000) trap in the same system. Figure 5 showed the RRF comparison between the two traps for all the 8260C compounds, where an average of 30% increase in RRF from type X trap is observed. Among all the 8260C compounds, 2,2-dichloropropane, which is commonly considered as a testing compounds to trace the active site in the flow path, has 48% increase in RRF from using the Type X trap. Table 6 lists the data.

## Conclusion

The 7000 Series Purge and Trap System easily meets and exceeds the EPA Method 8260C over a concentration range from 0.5  $\mu\text{g/L}$  to 200  $\mu\text{g/L}$  with excellent MDLs. Many of the technical advantages in the system, including compatibility of both water mode and soil mode, the highly automated autosampler and the Internal Standard Module, are proven to be working to save precious time for end users in the instrument calibration and sample measurement.

| No.       | Compound                        | RT (min) | Avg RRF   | RRF %RSD          | MDL (µg/L) | Replicates (RSD%) | Recovery (%) |
|-----------|---------------------------------|----------|-----------|-------------------|------------|-------------------|--------------|
| <b>1</b>  | Dichlorodifluoromethane         | 1.639    | 0.287     | 2.43              | 0.06       | 2.3               | 99.6         |
| <b>2</b>  | Methane, chloro-                | 1.875    | 0.449     | 3.87              | 0.07       | 2.7               | 99.2         |
| <b>3</b>  | Vinyl chloride                  | 1.952    | 0.376     | 3.67              | 0.06       | 2.3               | 99.3         |
| <b>4</b>  | Methane, bromo-                 | 2.326    | 0.155     | 18.03             | 0.06       | 3.9               | 83.1         |
| <b>5</b>  | Ethyl Chloride                  | 2.511    | 0.265     | 6.08              | 0.13       | 4.5               | 107.0        |
| <b>6</b>  | Trichloromonofluoromethane      | 2.653    | 0.310     | 2.79              | 0.09       | 4.1               | 96.0         |
| <b>7</b>  | Ethene, 1,1-dichloro-           | 3.317    | 0.301     | 3.88              | 0.09       | 3.7               | 96.6         |
| <b>8</b>  | Methylene Chloride              | 4.228    | 0.408     | 8.17              | 0.09       | 3.9               | 98.1         |
| <b>9</b>  | Ethene, 1,2-dichloro-, (trans)- | 4.471    | 0.390     | 7.13              | 0.09       | 3.8               | 100.8        |
| <b>10</b> | Ethane, 1,1-dichloro-           | 5.506    | 0.522     | 5.47              | 0.10       | 4.3               | 97.0         |
| <b>11</b> | Ethene, 1,2-dichloro-, (cis)-   | 6.461    | 0.409     | 3.18              | 0.05       | 2.0               | 97.9         |
| <b>12</b> | Propane, 2,2-dichloro-          | 6.6      | 0.291     | 5.74              | 0.06       | 4.6               | 90.9         |
| <b>13</b> | Methane, bromochloro-           | 6.809    | 0.300     | 4.80              | 0.12       | 4.5               | 96.1         |
| <b>14</b> | Trichloromethane                | 6.991    | 0.450     | 6.07              | 0.15       | 6.1               | 93.6         |
| <b>15</b> | Carbon Tetrachloride            | 7.145    | 0.183     | 4.09              | 0.15       | 5.8               | 98.5         |
| <b>16</b> | Ethane, 1,1,1-trichloro-        | 7.296    | 0.312     | 6.38              | 0.09       | 3.9               | 94.6         |
| <b>17</b> | Dibromofluoromethane            | 7.369    | Surrogate |                   |            |                   |              |
| <b>18</b> | 1-Propene, 1,1-dichloro-        | 7.531    | 0.392     | 6.26              | 0.07       | 3.1               | 95.5         |
| <b>19</b> | Benzene                         | 7.996    | 1.409     | 2.84              | 0.06       | 2.2               | 99.8         |
| <b>20</b> | 1,2-Dichloroethane-d4           | 8.327    | Surrogate |                   |            |                   |              |
| <b>21</b> | Ethane, 1,2-dichloro-           | 8.416    | 0.370     | 2.62              | 0.10       | 3.7               | 100.3        |
| <b>22</b> | Benzene, fluoro-                | 8.83     |           | Internal Standard |            |                   |              |
| <b>23</b> | Trichloroethylene               | 9.15     | 0.444     | 3.32              | 0.10       | 3.8               | 100.9        |
| <b>24</b> | Methane, dibromo-               | 9.983    | 0.213     | 4.05              | 0.10       | 4.0               | 98.0         |
| <b>25</b> | Propane, 1,2-dichloro-          | 10.205   | 0.396     | 2.73              | 0.11       | 4.5               | 99.8         |
| <b>26</b> | Methane, bromodichloro-         | 10.393   | 0.359     | 6.65              | 0.06       | 2.6               | 91.2         |
| <b>27</b> | Toluene-D8                      | 12.168   | Surrogate |                   |            |                   |              |
| <b>28</b> | Toluene                         | 12.236   | 2.008     | 5.73              | 0.09       | 3.1               | 109.3        |
| <b>29</b> | Tetrachloroethylene             | 13.051   | 0.419     | 6.27              | 0.12       | 4.9               | 104.5        |
| <b>30</b> | Ethane, 1,1,2-trichloro-        | 13.586   | 0.476     | 3.11              | 0.15       | 5.4               | 103.2        |
| <b>31</b> | Methane, dibromochloro-         | 13.949   | 0.409     | 8.88              | 0.12       | 5.8               | 86.8         |
| <b>32</b> | Propane, 1,3-dichloro-          | 14.181   | 0.852     | 4.14              | 0.09       | 3.4               | 101.6        |
| <b>33</b> | Ethane, 1,2-dibromo-            | 14.41    | 0.480     | 3.79              | 0.12       | 4.9               | 95.6         |
| <b>34</b> | Chlorobenzene-d5                | 15.649   |           | Internal Standard |            |                   |              |
| <b>35</b> | Benzene, chloro-                | 15.685   | 1.370     | 3.34              | 0.06       | 2.1               | 103.4        |
| <b>36</b> | Ethylbenzene                    | 15.82    | 2.086     | 3.27              | 0.10       | 3.8               | 106.0        |
| <b>37</b> | 1,1,1,2-Tetrachloroethane       | 15.866   | 0.437     | 4.57              | 0.12       | 5.2               | 99.2         |
| <b>38</b> | m,p-Xylene                      | 16.148   | 3.317     | 4.98              | 0.08       | 2.8               | 108.3        |

Table 4. Initial Calibration Results for VOCs Listed at 0.5 – 200 µg/L .

|           |                                |        |           |                   |      |      |       |
|-----------|--------------------------------|--------|-----------|-------------------|------|------|-------|
| <b>39</b> | o-Xylene                       | 16.975 | 1.693     | 3.88              | 0.08 | 3.0  | 105.0 |
| <b>40</b> | Bromoform                      | 17.065 | 0.261     | 12.24             | 0.09 | 5.6  | 83.8  |
| <b>41</b> | Styrene                        | 17.087 | 1.291     | 7.85              | 0.05 | 2.3  | 96.1  |
| <b>42</b> | Cumene                         | 17.584 | 1.999     | 5.87              | 0.07 | 2.7  | 105.8 |
| <b>43</b> | Benzene, 1-bromo-4-fluoro-     | 18.034 | Surrogate |                   |      |      |       |
| <b>44</b> | Benzene, bromo-                | 18.168 | 1.706     | 3.58              | 0.09 | 3.3  | 99.2  |
| <b>45</b> | Benzene, propyl-               | 18.308 | 4.567     | 5.67              | 0.07 | 2.6  | 107.9 |
| <b>46</b> | Ethane, 1,1,2,2-tetrachloro-   | 18.472 | 1.262     | 3.65              | 0.10 | 4.2  | 96.4  |
| <b>47</b> | 2-Chlorotoluene                | 18.516 | 2.873     | 3.85              | 0.07 | 2.4  | 107.4 |
| <b>48</b> | 1,2,3-Trichloropropane         | 18.639 | 1.358     | 3.25              | 0.08 | 3.0  | 104.3 |
| <b>49</b> | Benzene, 1,3,5-trimethyl-      | 18.669 | 3.540     | 4.77              | 0.09 | 3.5  | 107.8 |
| <b>50</b> | 4-Chlorotoluene                | 18.801 | 2.973     | 4.70              | 0.07 | 2.8  | 106.7 |
| <b>51</b> | Benzene, tert-butyl-           | 19.162 | 2.866     | 6.24              | 0.10 | 3.9  | 106.8 |
| <b>52</b> | Benzene, 1,2,4-trimethyl-      | 19.284 | 2.469     | 5.09              | 0.11 | 3.2  | 106.8 |
| <b>53</b> | Sec-Butylbenzene               | 19.447 | 3.908     | 8.00              | 0.07 | 3.0  | 108.3 |
| <b>54</b> | p-Isopropyltoluene             | 19.697 | 3.300     | 7.32              | 0.07 | 2.9  | 106.6 |
| <b>55</b> | Benzene, 1,3-dichloro-         | 19.729 | 2.129     | 4.36              | 0.09 | 3.5  | 102.1 |
| <b>56</b> | 1,4-Dichlorobenzene-d4         | 19.855 |           | Internal Standard |      |      |       |
| <b>57</b> | Benzene, 1,4-dichloro-         | 19.875 | 2.182     | 5.25              | 0.08 | 2.9  | 103.4 |
| <b>58</b> | Benzene, butyl-                | 20.326 | 2.658     | 8.75              | 0.06 | 2.7  | 106.7 |
| <b>59</b> | Benzene, 1,2-dichloro-         | 20.475 | 2.141     | 4.25              | 0.06 | 2.0  | 104.6 |
| <b>60</b> | Propane, 1,2-dibromo-3-chloro- | 21.424 | 0.399     | 6.40              | 0.21 | 10.6 | 85.7  |
| <b>61</b> | Hexachlorobutadiene            | 22.057 | 0.353     | 17.88             | 0.13 | 5.8  | 107.5 |
| <b>62</b> | Benzene, 1,2,4-trichloro-      | 22.075 | 1.080     | 7.18              | 0.09 | 3.8  | 98.6  |
| <b>63</b> | Naphthalene                    | 22.364 | 5.402     | 7.40              | 0.07 | 2.5  | 107.7 |
| <b>64</b> | Benzene, 1,2,3-trichloro-      | 22.522 | 1.082     | 7.04              | 0.08 | 3.1  | 99.7  |

Table 4. Initial Calibration Results for VOCs Listed at 0.5 – 200 µg/L, continued.

| Compound              | Fluorobenzene | Chlorobenzene-d5 | 1,4-Dichlorobenzene-d4 |
|-----------------------|---------------|------------------|------------------------|
| RSD% Water Mode (n=8) | 1.449         | 1.478            | 2.338                  |
| RSD% Soil Mode (n=5)  | 2.885         | 2.605            | 2.620                  |

Table 5. Reproducibility of Internal Standard Addition.

| ID# | Compound Name                   | Type K RRF | Type X RRF |
|-----|---------------------------------|------------|------------|
| 1   | Dichlorodifluoromethane         | 0.131      | 0.287      |
| 2   | Methane, chloro-                | 0.242      | 0.448      |
| 3   | Vinyl chloride                  | 0.233      | 0.376      |
| 4   | Methane, bromo-                 | 0.03       | 0.155      |
| 5   | Ethyl Chloride                  | 0.192      | 0.265      |
| 6   | Trichloromonofluoromethane      | 0.191      | 0.31       |
| 7   | Ethene, 1,1-dichloro-           | 0.226      | 0.301      |
| 8   | Methylene Chloride              | 0.362      | 0.408      |
| 9   | Ethene, 1,2-dichloro-, (trans)- | 0.282      | 0.39       |
| 10  | Ethane, 1,1-dichloro-           | 0.401      | 0.521      |
| 11  | Ethene, 1,2-dichloro-, (cis)-   | 0.307      | 0.408      |
| 12  | Propane, 2,2-dichloro-          | 0.196      | 0.291      |
| 13  | Methane, bromochloro-           | 0.248      | 0.299      |
| 14  | Trichloromethane                | 0.373      | 0.45       |
| 15  | Carbon Tetrachloride            | 0.154      | 0.183      |
| 16  | Ethane, 1,1,1-trichloro-        | 0.228      | 0.312      |
| 17  | Dibromofluoromethane            |            |            |
| 18  | 1-Propene, 1,1-dichloro-        | 0.305      | 0.391      |
| 19  | Benzene                         | 1.122      | 1.409      |
| 20  | 1,2-Dichloroethane-d4           |            |            |
| 21  | Ethane, 1,2-dichloro-           | 0.285      | 0.369      |
| 22  | Benzene, fluoro-                |            |            |
| 23  | Trichloroethylene               | 0.405      | 0.444      |
| 24  | Methane, dibromo-               | 0.16       | 0.213      |
| 25  | Propane, 1,2-dichloro-          | 0.31       | 0.396      |
| 26  | Methane, bromodichloro-         | 0.271      | 0.359      |
| 27  | Toluene-D8                      |            |            |
| 28  | Toluene                         | 1.576      | 2.008      |
| 29  | Tetrachloroethylene             | 0.325      | 0.419      |
| 30  | Ethane, 1,1,2-trichloro-        | 0.382      | 0.476      |
| 31  | Methane, dibromochloro-         | 0.307      | 0.409      |
| 32  | Propane, 1,3-dichloro-          | 0.678      | 0.852      |
| 33  | Ethane, 1,2-dibromo-            | 0.384      | 0.48       |
| 34  | Chlorobenzene-d5                |            |            |
| 35  | Benzene, chloro-                | 1.062      | 1.37       |
| 36  | Ethylbenzene                    | 1.606      | 2.085      |
| 37  | 1,1,1,2-Tetrachloroethane       | 0.326      | 0.437      |
| 38  | m,p-Xylene                      | 2.536      | 3.317      |

| ID# | Compound Name                  | Type K RRF | Type X RRF |
|-----|--------------------------------|------------|------------|
| 39  | o-Xylene                       | 1.318      | 1.693      |
| 40  | Bromoform                      | 0.196      | 0.261      |
| 41  | Styrene                        | 1.014      | 1.291      |
| 42  | Cumene                         | 1.473      | 1.999      |
| 43  | Benzene, 1-bromo-4-fluoro-     |            |            |
| 44  | Benzene, bromo-                | 1.315      | 1.706      |
| 45  | Benzene, propyl-               | 3.341      | 4.567      |
| 46  | Ethane, 1,1,2,2-tetrachloro-   | 0.668      | 1.262      |
| 47  | 2-Chlorotoluene                | 2.226      | 2.873      |
| 48  | 1,2,3-Trichloropropane         | 1.077      | 1.358      |
| 49  | Benzene, 1,3,5-trimethyl-      | 2.58       | 3.54       |
| 50  | 4-Chlorotoluene                | 2.261      | 2.973      |
| 51  | Benzene, tert-butyl-           | 2.025      | 2.866      |
| 52  | Benzene, 1,2,4-trimethyl-      | 2.53       | 2.469      |
| 53  | Sec-Butylbenzene               | 2.783      | 3.908      |
| 54  | p-Isopropyltoluene             | 2.323      | 3.3        |
| 55  | Benzene, 1,3-dichloro-         | 1.581      | 2.129      |
| 56  | 1,4-Dichlorobenzene-d4         |            |            |
| 57  | Benzene, 1,4-dichloro-         | 1.625      | 2.182      |
| 58  | Benzene, butyl-                | 1.84       | 2.658      |
| 59  | Benzene, 1,2-dichloro-         | 1.588      | 2.141      |
| 60  | Propane, 1,2-dibromo-3-chloro- | 0.236      | 0.399      |
| 61  | Hexachlorobutadiene            | 0.204      | 0.353      |
| 62  | Benzene, 1,2,4-trichloro-      | 0.735      | 1.08       |
| 63  | Naphthalene                    | 3.927      | 5.402      |
| 64  | Benzene, 1,2,3-trichloro-      | 0.749      | 1.082      |

Table 6. RRF Comparison between Type X and Type K.