



105.00

narkes.con

123456

narkes.con

# What is thermal desorption?

A guide to the history, principles and applications of thermal desorption for gas chromatography

www.markes.com



#### What is thermal desorption?

Thermal desorption is a versatile pre-concentration technique for gas chromatography that is used to analyse volatile and semi-volatile organic compounds.



In this e-book, we'll explain:

1 The basics of TD

How it evolved, how it works, why it's so versatile, and aspects of sorbent choice

2 Sampling options

Pumped and passive, canisters and on-line, headspace and more

3 Applications Why do analysts use TD, and what do they use it for?

We hope that, by the end of this document, you'll have an understanding of how TD benefits GC analysts across a wide range of scenarios – and how it might be able to help you.

For more about TD, visit our website at www.markes.com



WHAT IS THERMAL DESORPTION?

01





enquiries@markes.com www.markes.com



## Why use TD?

Thermal desorption arose out of the need to improve upon conventional sample preparation techniques for gas chromatography (GC). GC is very popular for analysing mixtures of organic compounds, but getting the analytes from the sample and into the vapour phase can be difficult.

Thermal desorption overcomes the drawbacks of conventional sample preparation techniques such as solvent extraction, solid-phase micro-extraction, purge-and-trap, and static headspace.

#### Specifically, it:

- Gives greater sensitivity than these techniques.
- Can be used for a wider range of compound classes.
- Is applicable to a wide range of sample types.
- Is safer and more environmentally-friendly than solvent extraction.
- Is easily automated.
- Is easy to validate.
- Complies with key standard methods.



## How does TD work?

The majority of TD applications use sorbent tubes and a two-stage desorption process to focus the analytes into a narrow band of gas, and so achieve the maximum sensitivity enhancement.



can contain multiple sorbents for analysis of an extended range of analytes

automatically split and 're-collected' onto a clean sorbent tube. The re-collected sample can then be analysed again, to validate the method, analyse it using a different detection technique, or simply for peace of mind.

analysts, because they avoid the expense of liquid cryogen, and the tendency for it to cause ice build-up in the trap box. Desorption of the tube and trap takes place in a reverse 'backflush' operation. This ensures that heavier analytes don't get stuck on the strongest sorbents.



## The versatility of TD

A major advantage of thermal desorption is that it can be applied to such a wide range of analytes and samples.

#### RANGE OF **ANALYTES**



international

## **Choosing TD sorbents**

Sorbents lie at the heart of why thermal desorption works. Packing tubes and traps with the appropriate sorbent(s) is therefore crucial for the success of all TD methods.





## The evolution of TD

## Over the course of nearly five decades, the capability of thermal desorption has advanced greatly, aided by advances in equipment.

| Early 1970s: Scientists<br>begin<br>to experiment with<br>thermal desorption<br>by packing standard<br>GC injector liners with<br>sorbent material.<br>Mid-1970s:<br>Environmental<br>Monitoring Syste<br>introduces the fin<br>commercial there<br>desorber. | <b>1981:</b><br>PerkinElmer introd<br>the first commercia<br>automated therma<br>desorber. | uces<br>al<br>al<br><b>Early 1990s:</b><br>Technical improve<br>made to improve<br>performance.<br>Mai<br>the l | ements<br>I998:<br>rkes introduces<br>UNITY™ thermal<br>desorber.          | 2001:<br>Markes introduce<br>ULTRA <sup>™</sup> and Air Se<br>modules to exten<br>sampling options            | es<br>erver <sup>™</sup><br>d the                    | Ices<br>ermal 2008:<br>Markes launche<br>series 2 therma<br>desorbers.<br>Lat<br>Markes in<br>range of acc<br>to ex<br>ap                              | e 2000s:<br>troduces<br>pand the<br>oplication<br>ge of TD.                                     | 2016:<br>Markes introduces<br>the 'xr' series of<br>thermal desorbers.                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1970                                                                                                                                                                                                                                                          | 1980 1                                                                                     | L990                                                                                                            |                                                                            | 2000                                                                                                          |                                                      |                                                                                                                                                        | 201                                                                                             | 0 2020                                                                                                                     |
| 3½-inch × 1<br>¼-inch TD -<br>tubes made -<br>standard -                                                                                                                                                                                                      | wo-stage TD<br>lectrical cooling<br>re-desorption<br>hecks<br>O-tube<br>utomation          | Efficient<br>focusing trap<br>Low-volume<br>valving<br>Tube sealing for<br>automation                           | Quantitative<br>re-collection<br>of split flows<br>Backflush<br>desorption | Analysis of tubes,<br>canisters and<br>on-line air<br>streams<br>Internal<br>standard<br>addition<br>100-tube | Twin-trap<br>operation for<br>continuous<br>sampling | Analysis of<br>ultra-volatiles,<br>high-boilers and<br>reactive compounds<br>Automation for<br>tube, canister and<br>on-line monitoring<br>RFID sample | TD interfaces for<br>dynamic headspace,<br>sorptive extraction,<br>breath sampling,<br>and more | Fully automated<br>re-collection of<br>inlet and outlet<br>split flows<br>Quantitative<br>analysis of $C_2$<br>to $C_{44}$ |



WHAT IS THERMAL DESORPTION?

02





enquiries@markes.com www.markes.com



## Sampling options for TD

Thermal desorption can be used with a range of sample introduction methods. Each of those mentioned below is described on the following pages.



Image credits: 1 SP Technical Research Institute of Sweden. 2 Owlstone Medical. 3 Equipco.



## Pumped sampling

#### **BASIC OPERATION**

- Air is pulled through a sorbent tube using a pump
- Single-bed or multi-bed tubes can be used
- A constant flow of gas into the vessel aids release of analytes onto a sorbent tube

#### PROS AND CONS

- + Sampling is quick (minutes to hours)
- + A wide range can be monitored in one run
- Sampling conditions need to be optimised so that the most volatile compounds don't 'break through' the sorbent bed



#### **TYPICAL ANALYTES MONITORED**

•  $C_3$  to  $C_{44}$ 

#### **COMMONLY USED FOR**

All types of ambient air monitoring

#### **TOP TIP**

A range of tubes are available ready-optimised for key applications



enquiries@markes.com www.markes.com



"

### **Passive sampling**

#### PROS AND CONS

- Easy to deploy
  - A limited range can be monitored in one run
  - Relatively slow sampling



MARKES

#### **TYPICAL ANALYTES MONITORED**

Analytes migrate across an air gap

Only single-bed tubes can be used

onto a bed of sorbent

•  $C_3$  to  $C_{44}$ 

**BASIC OPERATION** 

#### **COMMONLY USED FOR**

- Factory fenceline monitoring
- Personal monitoring

#### **TOP TIP**

Quantitation is easy if you know the uptake rate – and these are available for sampling of a large number of compounds onto common sorbents using industry-standard  $3\frac{1}{2}$ " ×  $\frac{1}{4}$ " tubes



enquiries@markes.com www.markes.com



## **Canister sampling**



#### **BASIC OPERATION**

- Air is allowed to flow at a controlled rate into an evacuated canister
- The air sample is then transferred to a sorbent-packed focusing trap

#### **PROS AND CONS**

- + Ideal for ultra-volatiles
- Not suitable for SVOCs
- Single-stage desorption restricts detection limits
- Bulky to transport

#### **TYPICAL ANALYTES MONITORED**

- Freons
- $\bullet$  C<sub>2</sub> hydrocarbons up to C<sub>10</sub>

#### **COMMONLY USED FOR**

- Ambient air monitoring for volatile 'air toxics'
- Atmospheric research



#### **TOP TIP**

In-line water removal devices greatly improve analytical performance





## **On-line monitoring**

#### **BASIC OPERATION**

 Air is pulled directly into a sorbentpacked focusing trap

#### **PROS AND CONS**

- + Ideal for ultra-volatiles
- Not suitable for SVOCs
- Single-stage desorption restricts detection limits



#### TYPICAL ANALYTES MONITORED

- Freons
- $C_2$  hydrocarbons up to  $C_{14}$

#### **COMMONLY USED FOR**

- Continuous monitoring for source apportionment
- Rapid detection of hazardous compounds
- Atmospheric research

#### **TOP TIP**

Some systems allow continuous monitoring (using two traps working alternately)





**77** -

### **Dynamic headspace sampling**

#### **BASIC OPERATION**

- The sample is placed in a headspace vessel – options include environmental chambers (~1 m<sup>3</sup>), microchambers (44 or 114 cm<sup>3</sup>), sampling bags and cuvettes
- A constant flow of gas into the vessel aids release of analytes onto a sorbent tube

#### **PROS AND CONS**

- + Highly sensitive
- + Easily adapted to the requirements of the application
- Standard methods for environmental chambers are often time-consuming



#### **TYPICAL ANALYTES MONITORED**

Generally C<sub>3</sub> to C<sub>20</sub>

#### **COMMONLY USED FOR**

- Product certification/compliance
- Quality control
- Rapid product profiling for R&D

#### **TOP TIP**

Microchambers can be fitted with accessories for surface and permeation testing

"

internation



enquiries@markes.com www.markes.com

### **Sorptive extraction**

#### **BASIC OPERATION**

A polymer-based sorbent is:

- Placed in a liquid sample (immersive sorptive extraction)
- Suspended above it (headspace sorptive extraction)
- The sorbent is then placed in an empty TD tube and desorbed

#### **PROS AND CONS**

- + Suitable solids and liquids
- + Considerably easier than solvent extraction
- Analytes need to be relatively concentrated



#### **TYPICAL ANALYTES MONITORED**

Generally C<sub>3</sub> to C<sub>30</sub>

#### **COMMONLY USED FOR**

 Aroma profiling of foods and beverages

#### **TOP TIP**

Immersive sampling is better than headspace sampling for less volatile compounds





## **Direct desorption**



#### **BASIC OPERATION**

- PROS AND CONS
- A small sample is heated in an empty TD tube
- + Quick and easy
- + Suitable for solids and semi-solids
- Only applicable to relatively homogeneous samples



#### **TYPICAL ANALYTES MONITORED**

■ Generally C<sub>3</sub> to C<sub>30</sub>

#### **COMMONLY USED FOR**

- Analysis of solids, pastes and resins
- Rapid profiling of polymers
- Analysis of car trim

### TOP TIP

Glass tubes make it easy to assess the state of the sample



enquiries@markes.com www.markes.com



### **Breath sampling**

#### **BASIC OPERATION**

 Breath is captured onto a sorbent tube

#### **PROS AND CONS**

- + Less invasive than sampling bodily fluid
- + Sampling doesn't require medical professionals
- Natural variability in breath makes analysis challenging



#### **TYPICAL ANALYTES MONITORED**

■ Generally C<sub>4</sub> to C<sub>20</sub>

#### **COMMONLY USED FOR**

- Occupational health monitoring
- Research into disease diagnosis

#### **TOP TIP**

Devices that capture the last portion of air from the lungs provide the most useful results



enquiries@markes.com www.markes.com





03

## APPLICATIONS



enquiries@markes.com www.markes.com



## Why do analysts use TD?

The need for advanced

like thermal desorption

is driven by a number

of factors.

analytical techniques











#### **Regulations:**

Many national and international regulations cite standard methods that rely on TD to achieve the necessary analytical performance.

#### **Emerging products:**

Public concern over the health impacts of everyday products – such as fragranced goods – demands rigorous, reliable information on the chemicals they contain. TD is a valuable item in the analyst's toolkit for investigating such products.

#### Lowering limit levels:

Our understanding of the long-term impacts of chemicals on our health and the environment is constantly improving. Acceptable levels of these chemicals are falling as a result, increasing the need for highly sensitive analytical techniques like TD.

#### **Quality control:**

Manufacturers are continually looking for ways to improve their products... for example, by improving consistency, or understanding the causes of off-odours that give rise to customer complaints.

#### **Brand comparison:**

The repeatability of thermal desorption and associated sampling techniques make it valuable for carrying out rigorous product comparisons.





The versatility of thermal desorption makes it applicable to a wide range of areas. For examples of TD in action, download one of our Application Guides.

**Ambient air** monitoring



**Automotive** studies



Soil gas and water monitoring



MARKES

**Thermal Desorption Applications Guide:** 

Environmental monitoring

A comprehensive guide to monitoring chemicals in the environment and the workplace using thermal desorption

Human health

Consumer environmental health



Food and drink



**Forensics** 



Fragrance and odour profiling



Industrial air monitoring and occupational health



**Chemical** ecology



homeland security

**Defence and** 



**Ecosystems and** the environment









## Our customers

Companies and

organisations around

the world use Markes'

equipment for product

quality control and

research.

INITED STAT

**EniChem** bp BAYER ER R BOEING -BASF CHANE ERS Google A H salbia 1 \* MOV RENAULT GM **EXON** Nestlé NASA Shell syngenta UNIVERSITY of York HONDA Unilever

We'd better point out that although we supply all the companies listed on this page, we're not indicating that they've provided an actual endorsement or recommendation. We like to think they might though!



## Want to know more?

If you'd like to know more about the technical aspects of thermal desorption, or about our products, you'll find everything you need to know on our website, www.markes.com

Alternatively, you'll find our contact details on the back page – we're always happy to answer your questions.







#### **Markes International**

Since 1997, Markes International has been at the forefront of innovation for enhancing the measurement of trace-level volatile and semi-volatile organic compounds (VOCs and SVOCs) by gas chromatography (GC).

Our range of thermal desorption products has for many years set the benchmark for quality and reliability. By lowering detection limits, and increasing the options open to the analyst, our thermal desorbers greatly extend the application range of GC.

Our comprehensive portfolio of thermal desorption products includes instruments such as UNITY-xr<sup>™</sup> and TD100-xr<sup>™</sup>, a wide range of high-quality sorbent tubes, and innovative accessories that allow representative vapour profiles to be collected with minimal inconvenience.

Markes is headquartered near Cardiff, UK, and also has laboratory and demonstration facilities in Sacramento, USA, and near Frankfurt, Germany. Markes is a company of the Schauenburg International Group.

#### **Markes International Ltd**

Gwaun Elai Medi-Science Campus, Llantrisant, RCT CF72 8XL, UK **T:** + 44 (0)1443 230935 **F:** + 44 (0)1443 231531 **E:** enquiries@markes.com

#### Markes International, Inc.

2355 Gold Meadow Way, Gold River, Sacramento, California 95670, USA T: 866-483-5684 (toll-free) F: 513-745-0741 E: enquiries@markes.com

#### **Markes International GmbH**

Schleussnerstrasse 42, D-63263 Neu-Isenburg, Frankfurt, Germany T: +49 (0)6102 8825569 F: +49 (0)6102 8825583 E: enquiries@markes.com

#### www.markes.com

