# Using the Statistical Compare and Fisher Ratio ChromaTOF® Features to Define Variance Prior to Multivariate Analysis in the Small Metabolite Profile of Diabetic Versus Non-Diabetic Urine by GCxGC-TOFMS John Heim • LECO Corporation; Saint Joseph, Michigan USA Key Words: Fisher Ratio, Statistical Compare, Multivariate Analysis, Metabolite Profile ## 1. Introduction The "Statistical Compare" option available in ChromaTOF® software allows the user to view statistical comparisons as a data processing step for groups of samples. The groups of samples are divided into different subsets or classes. ChromaTOF software aligns the data for the specified group of samples from the data processed peak tables. Upon completion of peak alignment, statistical information (such as minimum, maximum, average, relative standard deviation, etc.) on various peak properties (such as peak height, peak area, retention time, etc.) can be viewed in the Compound Table generated by Statistical Compare. The software will also compare statistical information from each class and between classes. Additionally, "Fisher Ratios" can be calculated from the Compound Table for each analyte. The Fisher ratio is a statistical calculation that can be used to discover the unknown chemical differences among known classes of complex samples. Statistical Compare results can also be exported as a .csv file and applied to third party software programs for supplemental data reduction such as multivariate analysis. In this paper, Statistical Compare is utilized to define the small metabolite profile with potentially significant class differences between trimethylsilyl (TMS) derivatized urine from diabetic and non-diabetic subjects analyzed by GCxGC-TOFMS. This research was designed to analyze TMS-derivatized urine samples for the small molecule metabolite profile with the intent to detect possible chemical variations between diabetic diseased state and normal control non-diabetic subjects. It is important to note that this research was conducted solely as a proof of concept study to test the validity of the Statistical Compare, Fisher Ratios, and .csv file export functions that are available in the ChromaTOF software. The data mining strategy used to distinguish analyte differences between diabetic and non-diabetic sample classes begins by aligning the analytes from the processed data files using the Statistical Compare feature. Following the Statistical Compare operation, Fisher Ratios are calculated to identify the compounds showing the highest variance. The resulting Compound Table is then exported as a .csv file to a third party multivariate analysis software package where PCA and clustering analysis was executed. ### 2. Experimental Conditions Morning-fast urine samples were collected from four subjects, two non-diabetic normal controls, one type I diabetic, and one type II diabetic. Samples were stored under refrigeration prior to liquid/liquid extraction with methylene chloride and subsequent derivatization with N,O-bis-(Trimethylsilyl)-trifluoroacetamide (BSTFA). Six 10 mL aliquots from each subject were prepared by acidification with concentrated sulfuric acid to pH 2. The 10 mL aliquots were extracted with 2 mL of methlyene chloride into a 20 mL scintillation vial containing approximately 5 mg sodium sulfate. Derivatization was then carried out with BSTFA by placing 200 $\mu$ L of extract into a sealed 2 mL auto sampler vial containing approximately 0.5 mg sodium sulfate followed by the addition of 30 $\mu$ L of dry pyridine and 200 $\mu$ L BSTFA to each vial. The samples were heated to 60°C for 1 hour and then analyzed by GCxGC-TOFMS. GCxGC-TOFMS results were generated with a LECO Pegasus® 4D Time-of-Flight Mass Spectrometer (TOFMS). The Pegasus 4D GC-TOFMS instrument was equipped with an Agilent 7890 gas chromatograph featuring a LECO two stage cryogenic modulator and independently temperature controlled secondary oven. LECO ChromaTOF software was used for all acquisition control, data processing, Statistical Compare, and Fisher Ratio calculations. A 30 m x 0.25 mm x 0.25 $\mu$ m film thickness, Rtx-5ms, (Restek Corp.) GC capillary column was used as the primary column for the GCxGC-TOFMS analysis. In the GCxGC configuration a 1.5 m x 0.18 mm id. x 0.18 $\mu$ m film thickness, Rtx-200, (Restek Corp.) was placed inside the LECO secondary GC oven which follows the thermal modulator. The Helium carrier gas flow rate was set to 1.5 mL/min at a corrected constant flow via pressure ramps. The primary column was programmed with an initial temperature of 40°C for 1.00 minute and ramped at 6°C/minute to 290°C for 10 minutes. The secondary column temperature program was set to an initial temperature of 50°C for 1.00 minute and then ramped at 6°C/minute to 300°C with a 10 minute hold time. The thermal modulator was set to +25°C relative to the primary oven and a modulation time of 5 seconds was used. The MS mass range was 45-800 m/z with an acquisition rate of 200 spectra per second. The ion source chamber was set to 230°C and the detector voltage was 1750V with an electron energy of -70eV. All of the data was processed with an identical data processing method and signal-to-noise ratio ≥100 prior to conducting Statistical Compare for the diabetic versus non-diabetic sample groups. #### 3. Results and Discussion Results of the diabetic versus non-diabetic small molecule metabolite profile study between diabetic and non-diabetic subjects are shown in Figures 1 and 2 below. The total ion chromatograms are depicted as contour plots. These chromatographic examples show visual peak differences between diabetic and non-diabetic sample types. Figures 1 and 2 illustrate the increased peak capacity, improved analyte detectability, and enhanced resolution gained by GCxGC-TOFMS. On average over 1000 peaks were found per sample with a signal-to-noise ratio ≥100 for this study. The red cross hatched area in each contour plot is an unprocessed region developed in the Classifications feature of ChromaTOF software which eliminates unwanted background peaks. Figure 1. Normal control subject non-diabetic: Contour Plot Total Ion Chromatogram of TMS-derivatized urine sample showing the small molecule metabolite profile for a non-diabetic control sample. Figure 2. Diseased state subject diabetic: Contour Plot Total Ion chromatogram of TMS-derivatized urine sample showing the small molecule metabolite profile. Notice that peak differences between the non-diabetic control sample and the diabetic sample can be seen by visual observation. ### 4. Using Statistical Compare in ChromaTOF Software The following example demonstrates the steps used to generate Statistical Compare data in ChromaTOF software. By following these steps in the Statistical Compare feature of ChromaTOF, the user is able to define the analyte variance between different classes of samples. ## **STEP 1. CREATE CLASSES** Highlight the Statistical Compare function in the ChromaTOF software database tree. In the database files area, right click and select New. Right click on the filename and assign a new name for the Statistical Compare. Next open the Class Table window from the Windows menu on the menu bar, click Statistical Compare and then open the Class Table window. Figure 3. The figure shows how to begin a "new" Statistical Compare operation and open the Class Table from the "Window" menu bar in ChromaTOF. #### STEP 2. ADD CLASSES AND SAMPLES TO EACH CLASS Next Add a Class from the Class Table by using the (+) button in the Class Table toolbar. Highlight each class and add samples by clicking the Add Samples button in the Class Table toolbar. A database tree of acquired samples will open; place a check mark in the box in front of the sample name which selects the samples to place in a class. Figure 4. The figure shows the Class table window, the Add samples window, and the Tool bar buttons to use when adding a class and samples to each class. The completed Class Table and Sample Table are shown below. The Sample Table and Class Table are reviewed to make certain that they are correct before continuing the statistical compare process. Figure 5. Shown is a completed Class table. Figure 6. Shown is a completed Sample Table. #### STEP 3. ALIGN ANALYTES FROM THE COMPOUND TABLE From the Windows menu bar select Statistical Compare and open the Compound Table. A compound table was generated from all of the sample peak tables. The compound table should appear green. Next right click in the Compound Table and select Align Analytes. When the align analytes function has finished, the compound table will appear normal (Black). If the compound table appears red, either the compound is undergoing background processing or the Statistical Compare processing has failed. When the Compound Table has completed the analyte alignment, the statistics for each compound can be viewed from the Compound Statistics by Class table. This table is opened from the Windows menu bar and the drop down menu found under the Statistical Compare option. | | Analyte | Name | Area | Count | Mass | | | | | |----------------------------------------|-----------------------------------------------------------------|--------------------------------------------|---------------------------------|------------|-------------|-----|--|--|--| | | , | | | Average | | | | | | | | 1* | 5. Eluorotruntonhan | 7. | 1792.538 | 1 | 114 | | | | | | 2 | Delete Analytes | | 16138.982 | 1 | 65 | | | | | | 3 | Align Analytes 🍑 | | 21362.685 | 1 | 71 | | | | | | 4 | Calculate Fisher Ratio | idine | 7248.793 | 1 | 53 | | | | | | 5 | Normalize Samples | ,1-dimethylethyl)-2,4-cycloper | 340.157 | 1 | 391 | | | | | TIC | 6 | Normalize Samples On Selected Analyte | 10-decanediyl)bis[3,4-dimethy | | 1 | 67 | | | | | II | 7 | Clear Normalization Factors | IVI-N-propyl- | 13710.582 | 1 | 224 | | | | | ** | 8 | Cancel Background Processing | | 29336400.9 | 1 | 55 | | | | | | 9 | Sort | | 2662511.23 | 1 | 116 | | | | | ABETIC RESE/ | 10 | Export Selected Analytes | /I)- | 1729392.27 | 1 | 170 | | | | | | 11 | Export All Analytes | | 372593.958 | 1 | 103 | | | | | ~ | 12 | Print Preview | .,1-dimethylethyl)-2,4-cycloper | | 1 | 143 | | | | | > | 13 | Print | | 330217.773 | 1 | 105 | | | | | ed | 14 - | FILIC | _ | 1800843.17 | 1 | 57 | | | | | 2008 4:34:23 PM | 15 | Properties | | 1891048.35 | 1 | 124 | | | | | 2008 4:34:23 PM<br>/2008 1:45:28 PM | 16 | Dimethyl(trimethylsilyl)methoxysilane | | 93858.198 | 1 | 89 | | | | | /2008 1:45:28 PM<br>/2008 4:03:00 PM | 17 | 2-Butenoic acid, tert-butyldimethylsilyl e | ester | 1499218.46 | 1 | 143 | | | | | /2008 4:03:00 PM<br>/2008 1:12:14 PM | 18 | 1H-Pyrrole-2-carboxaldehyde, 1-methy | | | 1 | 108 | | | | | /2008 1:12:14 PM<br>/2008 3:29:26 PM | 19 Allyloxytrimethylsilane 20 2,4-Hexadienenitrile | | | 166431.245 | <u> </u> | 115 | | | | | /2008 3:29:26 PM<br>/2008 1:30:25 PM | | | | 151672.989 | 1 | 66 | | | | | 2008 1:30:25 PM<br>2009 11:25:22 AM | 21 | 3-Butenamide | | 488682.078 | <u> </u> | 85 | | | | | 2009 11:25:22 AM<br>2009 11:08:10 AM | 22 Butanoic acid, 3-methyl-, trimethylsilyl ester | | ester | 97714.842 | 1 | 159 | | | | | 2009 11:08:10 AM<br>2009 11:05:36 AM | 23 Formamide, N,N-diethyl-<br>24 2-Pentene, 4,4-dimethyl-, (E)- | | | 25232020.8 | 1 | 101 | | | | | 2009 11:05:36 AIV<br>2009 10:39:01 AIV | | | | 176526,778 | <u> </u> | 98 | | | | | 2009 10:39:01 AM<br>2009 10:34:54 AM | 25 | 1-Pentene, 2,4,4-trimethyl- | | 1674004.30 | <del></del> | 57 | | | | | 2009 10:34:54 AIV<br>2009 1:10:24 PM | 26 | Trans-1,4-diethylcyclohexane | | 2093366.86 | | 111 | | | | | 2009 1:10:24 PM<br>2009 1:41:52 PM | 27 | | | | 1 | 94 | | | | | 2009 1:41:52 PM | 28 | Carbamic acid,(trimethylsilyl),(trimethyl | 9545422.13 | <u> </u> | 132 | | | | | | | 29 | Silanamine, 1-methoxy-N-(methoxydim | <u> </u> | 1 | 178 | | | | | | | 30 | Trifluoromethyl-bis-(trimethylsilyl)methy | 1348186.71 | <u> </u> | 149 | | | | | Figure 7. A partial Compound Table is illustrated above for the Statistical Compare of the diabetic versus non-diabetic urine GCxGC-TOFMS study. #### STEP 4. CALCULATE FISHER RATIO A Fisher Ratio calculation can be calculated as an additional feature to Statistical Compare after the analyte alignment is completed. The Fisher Ratio method can be used to derive the unknown chemical differences among known classes of complex samples. The Fisher Ratio is calculated by the difference of the analyte means from different classes divided by the difference of the analyte variance between different classes. The numerical value of the Fisher Ratio is related to the degree of variance by the size of the number. The higher the Fisher Ratio numerical value, the greater the class variance is for a particular compound. To calculate the Fisher Ratio from the Compound Table, right click in the Compound Table and select Calculate Fisher Ratio from the drop down menu. For further explanation of Fisher ratios, refer to Pierce, K. M., Hoggard, J. C., Hope, J. L., Rainey, P. M., Hoofnagle, A. N., Jack, R. M., Wright, B. W., and Synovec, R. E.; "Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts." Anal. Chem., 2006, 78 (14), 5068 - 5075. | Analyte | Name | Area | Count | Mass | Fisher Ratio | |---------|------------------------------------------------------------------------|------------|-------|-----------------|--------------------------| | | | Average 🛰 | | Delete Analyte | | | 314* | Linolenic acid, trimethylsilyl ester | 549968.495 | 19 | Alian Analytes | | | 444 | Glycine, N-benzoyl-, trimethylsilyl ester | 14405603.5 | 10 | Calculate Fishe | r Datio | | 238 | 2,2-Dimethyl-3-oxobutyric acid, 2-trimethylsilylethyl ester | 1446609.39 | 18 | Normalize Sam | | | 425 | Azelaic acid, bis(trimethylsilyl) ester | 76712.711 | 22 | | ples On Selected Analyte | | 74 | 3,8-Dioxa-2,9-disiladec-5-ene, 2,2,9,9-tetramethyl-, (E)- | 381071.501 | 18 | Clear Normaliz | | | 180 | Butanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 3457660.85 | 21 | | ound Processing | | 207 | Acetamide, 2,2,2-trifluoro-N,N-bis(trimethylsilyl)- | 66337.236 | 19 | Califer backgr | our id Frocessirig | | 443 | Tetradecanoic acid, trimethylsilyl ester | 640510.793 | 22 | Sort | | | 545 | 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester | 25934498.6 | 18 | Export Selecte | d Analytes | | 162 | Pentenoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 472953.756 | 11 | Export All Anal | ytes | | 451 | {2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)propyl][1,3]dioxolar | 118528.248 | 22 | Print Preview | | | 188 | (Methoxymethyl)trimethylsilane | 140577.353 | 16 | Print | | | 527 | Dipropylacetic acid, trimethylsilyl ester | 82541.935 | 17 | B | | | 482 | 1H-Indole-3-acetic acid, 1-(trimethylsilyl)-, trimethylsilyl ester | 6786616.94 | 22 | Properties | | Figure 8. Shown above is a completed Compound Table illustrating the drop down menu. The red arrow indicates the Calculate Fisher Ratio option. ## Completed Compound Table with Fisher Ratios The figure below shows the completed Compound Table with Fisher Ratios calculated and sorted from highest to lowest Fisher Ratio. The table reflects the columns selected in the table properties for Area average, Count of the samples in which the analyte was found, the unique Mass for each analyte, and the Fisher Ratio for each analyte. | | Compound Table-122208_d vs nd | | | | | |---------|------------------------------------------------------------------------|------------|-------|------|--------------| | Analyte | Name | Area | Count | Mass | Fisher Ratio | | | | Average | | | | | 314 | Linolenic acid, trimethylsilyl ester | 549968.495 | 19 | 122 | 22176 | | 444 | Glycine, N-benzoyl-, trimethylsilyl ester | 14405603.5 | 10 | 206 | 5449.9 | | 238 | 2,2-Dimethyl-3-oxobutyric acid, 2-trimethylsilylethyl ester | 1446609.39 | 18 | 160 | 4992.8 | | 425 | Azelaic acid, bis(trimethylsilyl) ester | 76712.711 | 22 | 317 | 4706.2 | | 74 | 3,8-Dioxa-2,9-disiladec-5-ene, 2,2,9,9-tetramethyl-, (E)- | 381071.501 | 18 | 129 | 4508.3 | | 180 | Butanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 3457660.85 | 21 | 147 | 4207.0 | | 207 | Acetamide, 2,2,2-trifluoro-N,N-bis(trimethylsilyl)- | 66337.236 | 19 | 198 | 4051.1 | | 443 | Tetradecanoic acid, trimethylsilyl ester | 640510.793 | 22 | 117 | 3903.6 | | 545 | 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester | 25934498.6 | 18 | 149 | 3844.9 | | 162 | Pentenoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 472953.756 | 11 | 143 | 3679.7 | | 451 | {2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)propyl][1,3]dioxolar | 118528.248 | 22 | 131 | 3613.6 | Figure 9. Shown above is a partial completed Compound Table showing the calculated Fisher Ratio for each analyte calculated as numerical value. A large Fisher Ratio value is related as having greater variance than a smaller Fisher Ratio value. #### View The Fisher Ratio Plot The Fisher Ratio Plot shows a graphical representation of the Fisher Ratios for the analytes selected from the Compound Table. The Fisher Ratio plot for each compound is displayed as an intensity line. Compounds with the highest Fisher Ratios and variation are shown graphically as the largest intensity values in the plot. The vertical y-axis shows the intensity scale of the values calculated for Fisher Ratios. The horizontal x-axis is the retention time scale in seconds. Each analyte is displayed at the retention time of elution. The number placed at the top of the Fisher Ratio line is the analyte identification number from the Compound Table. The red vertical line indicates the highest Fisher Ratio calculated for Analyte 314 from the Compound Table for the diabetic versus non-diabetic urine GCxGC-TOFMS study. Analyte 314 showing the highest variance between the diabetic and non-diabetic classes was identified by NIST library search as Linolenic acid, trimethylsilyl ester. Figure 10. The Fisher Ratio plot shown above graphically represents unknown chemical differences between the normal control non-diabetic sample group and the diabetic diseased state sample group. #### Display Compound Statistics By Class Additional statistical information can be viewed by opening the Compound Stats by Class option from the drop down menu of the Statistical Compare tab in the Windows menu bar. The example below shows the Compound statistics for Analyte 314, Linolenic acid, trimethylsilyl ester which also had the highest calculated variance and Fisher Ratio. Different statistical calculations can be set in the properties as columns and consequently viewed in the compound statistics table consequently providing additional information and insight into the unknown chemical differences between different sample classes. The table below shows the signal-to-noise ratios for Analyte 314 indicating that Linolenic acid trimethylsilyl ester has approximately 20 times higher signal-to-noise response in Class 1 (diabetic) than in Class 2 (non-diabetic). This example illustrates that potentially significant data results can be detected by utilization of the Compound Stats by Class feature in Statistical Compare. | D | Name | S/N | Count | |----------|-----------------|----------|-------| | | | Average | | | 314-1 | Class1 | 4195.407 | 10 | | 314-1-1 | B_JH_2:1 | 5417.957 | | | 314-1-2 | B_JH_3:1 | 4750.749 | | | 314-1-3 | B_JH_4:1 | 5115.776 | | | 314-1-4 | B_JH_5:1 | 3751.567 | | | 314-1-5 | B_JH_6:1 | 4795.219 | | | 314-1-6 | B_1_PS_TYPE2:1 | 3933.214 | | | 314-1-7 | B_2_PS_TYPE2:1 | 3203.246 | | | 314-1-8 | B_4_PS_TYPE2:1 | 3104.403 | | | 314-1-9 | B_5_PS_TYPE2:1 | 3791.019 | | | 314-1-10 | B_6_PS_TYPE2:1 | 4090.920 | | | 314-2 | Class2 | 211.541 | 9 | | 314-2-11 | B_CTL 1 JB_1:1 | 149.858 | | | 314-2-12 | B_CTL 1 JB_2:1 | 122.867 | | | 314-2-13 | B_CTL 1 JB_3:1 | | | | 314-2-14 | B_CTL 1 JB_4:1 | 809.461 | | | 314-2-15 | B_CTL 1 JB_5:1 | | | | 314-2-16 | B_CTL 1 JB_6:1 | | | | 314-2-17 | B_CTRL 2 ML_1:1 | 105.032 | | | 314-2-18 | B_CTRL 2 ML_2:1 | 129.824 | | | 314-2-19 | B_CTRL 2 ML_4:1 | 120.896 | | | 314-2-20 | B_CTRL 2 ML_5:1 | 222.299 | | | 314-2-21 | B_CTRL 2 ML_6:1 | 127.434 | | | 314-2-22 | B_3_ML_CTRL2:1 | 116.197 | | | 314 | Total | 2308.313 | 19 | Figure 11. The Compound Statistics table by class can be generated and viewed in a separate window of ChromaTOF. Specific parameters can be selected from the Properties tab, such as statistics for retention time, peak height, concentration, etc. The example above shows the diabetic (Class 1) and the non-diabetic (Class 2) results showing the average signal-to-noise ratio for each sample. The results indicate which samples that Analyte 314 was found in and the numerical signal-to-noise value. The Name/Class column shows the sample name for each analysis and the Count column lists in how many samples the analyte was found for a particular class. ## STEP 5. EXPORTING RAW DATA FROM THE COMPOUND TABLE AS A (.csv) FILE The raw data for the analytes of interest can be exported as a .csv file. All of the wanted fields of interest need to be displayed in the Compound Table. The software will only include the visible fields in the export. It is possible to export all or selected analytes from the compound table. To export a .csv file, right click anywhere inside the Compound Table grid and select Export Selected Analytes from the drop down menu. Only the highlighted analytes selected will be exported in this case. Alternatively, right click inside the grid and select Export All Analytes if that is the desired option. Figure 12. The Compound Table above illustrates how to export the Statistical Compare results from the compound Table to a .csv file of the raw data. ### Example of the Exported .csv File Displayed in Excel The partial .csv file of the diabetic versus non-diabetic small molecule metabolite profile is shown below. The Excel spreadsheet displays the analyte Peak Name, Sample Name, Class, and Peak Area as columns for every sample and class from the Statistical Compare analysis. The columns shown are a result of what statistical information was set to be displayed in the Compound Table. This particular .csv file was designed to be used in the commercially available peripheral multivariate analysis program, Miner3D. | × N | Nicrosoft Excel - TEST 2 diab vs non13009.csv | | | | | | | | | |--------------|-------------------------------------------------------------------|--------------------|------------------------------------------------|------------|----------|----------|----------|------------------------|----------| | : <b>B</b> ) | Eile Edit Yiew Insert Format Tools Data Window Help A | kdo <u>b</u> e PDF | | | | | | | | | | | - 🧶 Σ | $-\frac{A}{Z}\downarrow \frac{Z}{A}\downarrow$ | <b>100</b> | 0% 🕶 🕡 | Arial | | <b>-</b> 10 <b>-</b> 1 | B / U | | The | 📆 🚚 i 💁 💂 | | | | | | | | | | | A42 | -silatetrade | can-1-ol | | | | | | | | | A | B | C | D | F | F | G | Н | 1 | | 1 | , , , , , , , , , , , , , , , , , , , | B JH 1:1 | | B JH 2:1 | | B JH 3:1 | _ | B JH 4:1 | | | 2 | Peak | Class | Area | Class | Area | Class | Area | Class | Area | | 3 | | Diabetic | 406541.1 | | 1020652 | | | Diabetic | 952796.2 | | 4 | | Diabetic | 990014.8 | Diabetic | 1142043 | | | Diabetic | 764.895 | | | Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester | | | | | Diabetic | 51874.35 | | | | 6 | 2,2-Dimethyl-3-oxobutyric acid, 2-trimethylsilylethyl ester | | | | | | | Diabetic | 174642.9 | | 7 | Glycine, N-benzoyl-, trimethylsilyl ester | | | Diabetic | 24819.5 | | | | | | 8 | Azelaic acid, bis(trimethylsilyl) ester | Diabetic | 57557.59 | Diabetic | 55082.65 | Diabetic | 53988.82 | Diabetic | 52485.76 | | 9 | Acetamide, 2,2,2-trifluoro-N,N-bis(trimethylsilyl)- | Diabetic | 11498.9 | Diabetic | 13772.69 | Diabetic | 27717.77 | Diabetic | 20245.64 | | 10 | 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester | Diabetic | 19126549 | Diabetic | 18519912 | Diabetic | 17554930 | Diabetic | 24612411 | | 11 | Pentenoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester | Diabetic | 74588.91 | Diabetic | 72996.18 | Diabetic | 83847.46 | | | | 12 | {2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)propyl][1,3 | Diabetic | 14279.52 | Diabetic | 24021 | Diabetic | 29858.31 | Diabetic | 31505.82 | | 13 | 1H-Indole-3-acetic acid, 1-(trimethylsilyl)-, trimethylsilyl este | Diabetic | 1379351 | Diabetic | 1455209 | Diabetic | 1275428 | Diabetic | 1278597 | | 14 | (Methoxymethyl)trimethylsilane | | | | | | | | | | 15 | Dipropylacetic acid, trimethylsilyl ester | | | | | | | | | | 16 | Benzoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, ethyl es | Diabetic | 256269.8 | Diabetic | 300549.3 | Diabetic | 253671.6 | Diabetic | 298356.2 | | 17 | Arachidonic acid, trimethylsilyl ester | | | | | Diabetic | 3431.35 | | | | 18 | | Diabetic | 230726.9 | | | Diabetic | 235220.1 | | 436996.7 | | 19 | | Diabetic | 26892.63 | | 27822.48 | | 25672.19 | | 25118.88 | | | 7,10-Epoxytricyclo[4.2.1.1(2,5)]decane, 1-trimethylsilyl- | | | Diabetic | 3670.191 | Diabetic | 10697.73 | Diabetic | 4531.661 | | 21 | Benzenepropanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl | ester | | | | | | | | Figure 13. Illustrated above is an exported .csv file partial Excel spreadsheet of the Statistical Compare results for the diabetic and non-diabetic urine GCxGC-TOFMS study. Subsequently, the compounds of highest variance by their Fisher Ratios were then loaded into multivariate analysis programs. The columns displayed in the figure above show the peak compound name, the sample name with the sample Class designation, and the peak area for each analyte. # STEP 6. MULTIVARIATE ANALYSIS DEVELOPED FROM STATISTICAL COMPARE RESULTS EXPORTED AS A .CSV FILE Multivariate analysis is based on multivariate statistics which involves observation and analysis of more than one statistical variable at a time. The technique is used to perform studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. This study applied the ChromaTOF features Statistical Compare and Fisher Ratios to a data set of twenty-three samples from diseased and non-diseased state subjects that determined the analytes with the highest variation across the sample population from two distinct classes. The Statistical Compare results generated a Compound Table sorted by variance using the Fisher Ratio method which was then exported as a .csv in Excel format and applied to several multivariate analysis platforms. The exported .csv file was subsequently loaded as a spreadsheet containing the top 430 analytes according to their Fisher Ratios into the third party multivariate analysis software package Miner3D. The data was submitted to an Eigenvector analysis before an optimized PCA Plot was calculated. PCA analysis was conducted on the variables of analyte identification, class, (diseased or non-diseased), and analyte peak area. Following PCA analysis, K-means clustering was applied using the Miner3D software. The figure below shows the Miner3D workspace and the loadings for the PCA vectors. Figure 14. Shows the Miner3D workspace with the .csv file data loaded and the multivariate analysis statistics from the results of the ChromaTOF Statistical Compare analysis. The three-dimensional graph shown below in Figure 15 shows the Statistical Compare data results from the small molecule metabolite profile study of the diabetic versus non-diabetic GCxGC-TOFMS analysis. The results were developed in the commercially available Miner3D software using PCA and K-means clustering analysis. The graph shows clear differences as well as similarities in the small molecule metabolites found in both diabetic and non-diabetic TMS derivatized urine analyzed by GCxGC-TOFMS. Miner3D PCA Plot With K-means Clustering Showing Analyte and Class Variation Between the Diabetic Versus Non-Diabetic Small Metabolite Profile Figure 15. The results from Statistical Compare exported as a .csv file with PCA and Clustering analysis are shown in the figure above. Each colored sphere in the graph represents a different metabolite compound. The color chart on the top right indicates that specific groups of analytes can be attributed to either diabetic, or both classes. This graphical representation illustrates the value of the Statistical Compare feature of ChromaTOF software to facilitate the data mining process in finding potentially significant biomarkers. ## 5. Conclusions This paper presents a step-by-step approach using diabetic versus non-diabetic GCxGC-TOFMS metabolomic data to instruct the user on how to perform *Statistical Compare* as well as export useful result tables to peripheral multivariate software that will provide additional meaningful data reduction capabilities. A comprehensive GCxGC-TOFMS analysis accompanied by statistical comparison targeting high variance data through *Fisher Ratios* along with multivariate PCA and Clustering analysis was demonstrated. This exploratory research presents an optimized GCxGC-TOFMS analysis followed by a data mining strategy using preliminary statistical methods prior to multivariate analysis that establishes a viable strategy which can identify significant metabolite variation in complex biological samples from distinct classes. The results presented from this study demonstrate that significantly increased analytical performance is achieved by utilizing comprehensive multidimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for the characterization of small molecule metabolite profiles. TOFMS provides the non-skewed mass spectra and fast acquisition needed to deconvolute complex overlapping peaks as well as the data density required to characterize the narrow peaks (<100 ms) GCxGC. Several new ChromaTOF software features such as Statistical Compare and Fisher Ratio calculations were applied in this metabolomic study. These features allow the user to find significant unknown chemical differences among known classes of complex samples. The new features available in LECO's ChromaTOF software were used to align a large set of data and define the highest variance for analytes between diseased and non-diseased state subjects. Furthermore, it was demonstrated that the results from Statistical Compare and Fisher Ratio calculations can be exported quite simply into multivariate analysis programs whereby PCA and Clustering analysis can be applied. Form No. 203-821-372 6/09-REV0 © 2009 LECO Corporation