Aroma profiling of pet food using high-capacity sorptive extraction and TD-GC*GC-TOF MS # Introduction Pet food manufacturers place great importance on the aroma of their products, as off-odours may be unappealing to both the pets and their owners. Confident identification of the volatile organic compounds (VOCs) from pet food can help these companies better understand the factors governing the release of pleasant and unpleasant aromas. VOC aroma profiles are typically analysed by solid-phase micro-extraction (SPME), which although a fast and simple technique, can be limited in terms of sample capacity, reproducibility and sensitivity. An alternative to SPME is high-capacity probe-based sorptive extraction, which results in higher sample loadings because of the large volume of PDMS phase. Typically, a SPME fiber has a sorbent volume of just 0.5 μ L, while HiSorb sorptive extraction probes contain 65 μ L of sorbent. When used in conjunction with secondary refocusing by thermal desorption (TD), the result is greater sensitivity across a wide analyte range. Further analytical benefits can be achieved for analyte separation and detection, by using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). The enhanced separation capacity of this approach is ideal for handling the complex aroma samples of pet food, because it allows the entire composition to be screened in a single analysis, with confident identification of compounds that would ordinarily co-elute. In this study, we demonstrate the value of high-capacity sorptive extraction with TD-GC×GC-TOF MS to investigate the volatile compounds present in the headspace of two brands of cat food, and discuss how these compounds might influence their aroma profiles. In this case the GC×GC method employs INSIGHT™ reverse-fill/flush flow modulation, lowering running costs and avoiding the logistical issues associated with liquid cryogen. For more information on GC×GC please read our white paper. # **Experimental** **Sample preparation:** Tinned meat-based cat food (6 g) was placed in a 20 mL headspace vial (Figure 1). **Headspace sorptive extraction:** PDMS sampler: Inert HiSorb™ probe (Markes International); Agitation: 500 rpm. Temp.: 60°C; Equilibration time: 20 min; Sampling time: 15 min. **TD:** Instrument: TD100-xr™ (Markes International); Focusing trap: 'General-purpose'. HiSorb probes were inserted into empty inert-coated stainless-steel TD tubes. **GC×GC:** Flow modulator: INSIGHT™ (SepSolve Analytical); P_M: 3.0 s. **TOF MS:** Instrument: BenchTOF-HD™; Mass range: m/z 45–500. **Software:** ChromSpace[®] GC×GC software for full instrument control and data processing. Please contact SepSolve for full analytical parameters. #### Figure 1 Cat food being sampled in a headspace vial using a HiSorb probe. The pointed tip of the probe pierces the PTFE seal of the headspace vial septum, simplifying operation. ## **Results and discussion** ## 1. Overall component separation GC×GC–TOF MS surface charts for the two brands of cat food are displayed in Figure 2, and show excellent separation across the analyte profile. Figure 2 GC×GC–TOF MS surface plots of two brands of cat food using headspace sampling by HiSorb probes, viewed in ChromSpace. #### 2. Separation of co-eluting components The enhanced separation achieved by INSIGHT GC×GC is clearly seen in Figure 3, in which peaks that would co-elute in conventional GC are separated in the second dimension. This is particularly valuable for compounds with low odour thresholds, which despite being detectable by GC-olfactometry, may be overlooked or misidentified due to co-elutions with high-loading peaks. For example, in Figure 3 we can see that the small peak due to 2-acetylthiophene (#24) would be obscured both by nonanal (#23) and a large siloxane interference. 2-Acetylthiophene has an undesirable 'sulfurous' aroma^[1] and an odour threshold of just 0.08 ppb,^[2] making confident identification at trace levels important. As well as being separated from these components with GC×GC, 2-acetylthiophene is confidently identified by comparison against the NIST 17 database (Figure 4), as is the related odorous compound 2-acetyl-3-methylthiophene (#25, with a 'phenolic' aroma^[1]). Figure 3 Enhanced separation of a range of compound classes in the headspace aroma profile of cat food (sample B) by GC×GC-TOF MS. S = Siloxane. Alkanes and alkenes Figure 4 BenchTOF spectra (top, red) and NIST 17 spectra (bottom, blue) for two sulfur heterocycles identified in Figure 2. #### 3. Identification of aroma-active compounds Figure 5 and Table 1 provide an overview of the key compounds identified. As expected for a meat-based pet food, a number of compounds were found to contribute 'meaty' or 'nutty/roasted' aromas. Some points of interest include: - ➤ Tetrahydrothiophen-3-one (#8, 'garlic, meaty') was only present in sample A, while its alkylated derivative, 2-methyltetrahydrothiophen-3-one (#12, 'sulfurous, fruity, berry'), was only found in sample B. - Pyrazines (#1, 5, 7, 15, 19, often described as 'nutty') had similar relative abundances in both samples. - A number of compounds present are reported to have 'sulfurous' or 'animal' aromas, and could be perceived as off-odours. Dimethyl disulfide (#2, 'sulfurous, vegetable, onion') was found in sample A only. - ➤ The ketones heptan-2-one (#6, 'cheesy, fruity') and octan-2-one (#11, 'earthy, weedy') were present in greater abundance in sample B. Figure 5 Comparison of the aroma profiles of cat food samples A and B. Compound identities are listed in Table 1. | | | ¹t _R | ²t _R | Peak area (× 10 ⁵
counts) | | | |-----|--|-----------------|-----------------|---|----------|--------------------------------------| | No. | Compound | (min) | (s) | Sample A | Sample B | Reported aroma ^[1] | | 1 | Pyrazine | 6.156 | 2.340 | 12.4 | 5.87 | Pungent, sweetcorn, roasted hazelnut | | 2 | Dimethyl disulfide | 6.213 | 1.728 | 26.4 | - | Sulfurous, vegetable, onion | | 3 | 2-Methylthiophene | 6.877 | 1.700 | 26.7 | 28.7 | Sulfurous, alliaceous, onion | | 4 | Hexanal | 7.752 | 1.790 | 16.6 | 22.4 | Fresh, green, fatty | | 5 | Methylpyrazine | 8.600 | 2.336 | 42.5 | 27.9 | Nutty, cocoa, roasted | | 6 | Heptan-2-one | 10.561 | 1.832 | 17.1 | 83.8 | Cheesy, fruity, spicy, sweet, herbal | | 7 | 2,6-Dimethylpyrazine | 11.450 | 2.169 | 92.1 | 61.9 | Cocoa, roasted nuts | | 8 | Tetrahydro-
thiophen-3-one | 13.117 | 2.366 | 3.34 | - | Garlic, meaty, green, vegetable | | 9 | Benzaldehyde | 13.372 | 2.133 | 63.8 | 58.6 | Fruity, sharp, sweet, bitter | | 10 | 2-Pentylfuran | 13.781 | 1.638 | 31.3 | 48.4 | Fruity, green, earthy | | 11 | Octan-2-one | 13.877 | 1.778 | 8.56 | 24.9 | Earthy, weedy, natural | | 12 | 2-Methyltetrahydro-
thiophen-3-one | 14.253 | 2.200 | - | 22.3 | Sulfurous, fruity, berry | | 13 | Octanal | 14.355 | 1.729 | 16.4 | 18.4 | Aldehydic, waxy, citrus, orange peel | | 14 | Δ^3 -Carene | 14.383 | 1.595 | 2.07 | _ | Sweet, citrus, terpenic | | 15 | 2-Ethyl-3-methyl-
pyrazine | 14.497 | 2.099 | 24.0 | 16.5 | Nutty, peanut, musty | | 17 | 2-Acetylthiazole | 15.172 | 2.228 | 64.9 | 32.5 | Toasted, nutty, bready | | 18 | Acetophenone | 16.683 | 2.176 | - | 3.72 | Floral, sweet, pungent | | 19 | 2,5-Dimethyl-
3-ethylpyrazine | 16.813 | 1.961 | 12.7 | 31.0 | Potato, cocoa, roasted, nutty | | 21 | Nonan-2-one | 17.149 | 1.731 | 8.31 | 14.7 | Fruity, fresh, sweet, green, weedy | | 22 | 5-Methyl-2-formyl-thiophene | 17.359 | 2.229 | 9.23 | 3.49 | Bitter, sweet, almond | | 23 | Nonanal | 17.566 | 1.689 | 32.5 | 30.8 | Waxy, aldehydic, rose, fresh | | 24 | 2-Acetylthiophene | 17.567 | 2.305 | 9.73 | 10.5 | Sulfurous, nutty | | 25 | 2-Acetyl-3-methyl-
thiophene | 19.393 | 2.181 | 0.87 | 0.64 | Phenolic, wintergreen | | 27 | Decan-2-one | 20.177 | 1.689 | 4.65 | 4.69 | Orange, floral, fatty, peach | | 29 | Kahweofuran
(2,3-Dihydro-6-
methyl-thieno[2,3-c]
furan) | 20.433 | 2.135 | 57.7 | 31.5 | Sulfurous, smoky, roasted | | 30 | Decanal | 20.631 | 1.656 | 13.9 | 10.8 | Sweet, aldehydic, waxy, orange peel | | 31 | Undecanal | 23.483 | 1.642 | 2.11 | 2.34 | Waxy, soapy, floral, aldehydic | | 32 | Indole | 23.729 | 2.388 | 4.76 | 4.34 | Animal, floral, mothball, fecal | | 33 | α-lonene | 24.998 | 1.806 | 10.7 | 28.3 | Sweet, woody, floral, violet | Table 1 Compounds identified in the pet food headspace likely to contribute to the aroma. #### **Conclusions** In this study, we have shown that the combination of high-capacity sorptive extraction with TD pre-concentration and INSIGHT GC×GC–TOF MS analysis is a powerful approach to characterising the complex headspace aroma profiles of pet food. The high-capacity sorptive extraction probes used in this study are robust and reusable, minimising the cost per sample while allowing unattended sampling. As well as being applicable to headspace or immersive sampling, they are compatible with a wide range of chemical classes, with improved sensitivity over SPME due to the substantially larger (>100×) volume of sorbent. Thermal desorption of the probes using instrumentation from Markes International offers the additional advantage of avoiding the need for duplicate samples to be taken, because of the ability to quantitatively re-collect a portion of the sample onto a clean sorbent tube for repeat analysis. Crucial for this application is the need for a high degree of chromatographic resolution, in order to generate the clean mass spectra needed to confidently identify odour taints. This is an inherent advantage of GC×GC–TOF MS with INSIGHT flow modulation, which also further reduces running costs by avoiding the use of cryogen. For more information on this application, or any of the techniques or products used, please contact SepSolve. ## References - [1] The Good Scents Company Information System (search facility), www.thegoodscentscompany.com/search2.html (accessed on 15 October 2017). - [2] D.S. Mottram, Meat (Chapter 5), in: *Volatiles in Food*, H. Maarse (ed.), CRC Press, 1991. INSIGHT™ is a trademark of SepSolve Analytical. BenchTOF™, BenchTOF-HD™, HiSorb™ and TD100-xr™ are trademarks of Markes International. ChromSpace® is a registered trademark of Markes International. Applications were performed under the stated analytical conditions. Operation under different conditions, or with incompatible sample matrices, may impact the performance shown. D0033_3_130418