Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes
    • The Product Book

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
    • Content Hubs
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2015 / Advanced Data Acquisition and Data Processing Workflows to Identify, Quantify and Confirm Pesticide Residues

Advanced Data Acquisition and Data Processing Workflows to Identify, Quantify and Confirm Pesticide Residues

03/08/2015

Share

Featured Image
Overview

Pesticides are widely used in agriculture to protect crops and to improve efficiency of production. Pesticide residues may pose a potential threat to human health. Modern analytical techniques, such as QuEChERS extraction followed by LC-MS/MS, allow screening for pesticides in a variety of food matrices.1-3

Here we present a new and powerful workflow to identify, quantify and confirm the presence of 400 pesticides utilizing generic QuEChERS extraction and LC-MS/MS analysis with the AB SCIEX QTRAP® 6500 system using the Scheduled MRM™ Pro algorithm and Information Dependent Acquisition (IDA) of full scan MS/MS spectra. High confidence in identification and confirmation was achieved by automatically calculating the ratio of quantifier and qualifier ions and searching MS/MS spectral libraries in MultiQuant™ and MasterView™ software. Qualitative method performance was verified using guideline SANCO/12571/2013 guideline.4

ab sciex logo
app note 00715-main.img
Introduction

Due to the high usage of pesticides in agriculture, there is a high probability that pesticide residues Pesticides are widely used in agriculture to protect crops and to improve efficiency of production. After application pesticide may remain on agricultural products or accumulate in the environment, posing a potential threat to human health. Consequently, government agencies, food producers and food retailers have the duty to ensure that pesticide residues occurring in food are below established maximum residue limits set by Codex Alimentarius, the European Union, the US EPA, or by the Japanese Ministry of Health, Labour and Welfare. There is a demand for powerful and rapid analytical methods that can identify pesticides with high confidence in a broad range of food matrices and quantify them at low concentrations with good accuracy and reproducibility. A new analytical workflow was developed to screen for 400 pesticides in fruit, vegetable, tea and spices utilizing generic QuEChERS extraction, UHPLC separation using a core-shell particle column, and MS/MS detection with the AB SCIEX QTRAP® 6500 system. The Scheduled MRM™ Pro algorithm was used to acquire ~800 MRM transitions to accurately quantify target pesticides and identify them based on the characteristic ratio of quantifier and qualifier ions. The Scheduled MRM™ data were also used to automatically acquire full scan MS/MS spectra to allow data to be searched against spectral libraries. The data processing in MultiQuant™ and MasterView™ software was used as a confirmatory tool to enhance confidence in quantitative and qualitative results.

>> Download the full Application Note as PDF

Newsletters

Receive the latest pathologist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

NIR on the Range: Grazing Animal Nutrition
NIR on the Range: Grazing Animal Nutrition

January 16, 2015

Portable NIR spectroscopy of grazing animal feces ...

Oceans Help Predict a Wave of Climate Change
Oceans Help Predict a Wave of Climate Change

January 16, 2015

A fluorescence-based assay helps study carbon fixa...

Why They Choose FDGSi
Why They Choose FDGSi

February 17, 2015

Find out why companies choose F-DGSi

Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold
Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold

February 27, 2015

Comparison of Biotage® Extrahera™ vs...

Thank you for reading The Analytical Scientist

To continue reading, either register for a free account below or login.

Register or Login

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.