Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2015 / Sample Prep Method Development and Optimization for the LC/MS/MS Analysis of Steroid Hormones in Plasma

Sample Prep Method Development and Optimization for the LC/MS/MS Analysis of Steroid Hormones in Plasma

02/27/2015

Share

Featured Image
Introduction

HybridSPE®-Phospholipid plates provided excellent analyte recovery of these difficult compounds from plasma samples with subsequent LC/MS/MS analysis on Ascentis® Express Fused-Core® C18 columns. The extracts were free of endogenous phospholipids that can interfere with quantitation, decrease sample throughput and reduce column lifetime.

00515-app-note-sigma-logo

There is a growing trend toward converting some clinical methods from immunoassay to LC/MS/MS for a variety of reasons. LC/MS/MS improves assay specificity, is not limited by antibody availability, and allows multiplexed analyte assays to be conducted simultaneously. However, LC/MS/MS is not without its limitations, most notably interferences from endogenous sample matrix, which can result in seemingly random and arbitrary discrimination in analyte response, among other effects.1

00515-app-note-sigma-mainFigure 1: Steroid Hormones.
Objectives of the Study

The goal of this study was two-fold. First, to develop a simple LC/ MS/MS method, including sample preparation using HybridSPEPhospholipid plates, for the direct analysis of the steroid hormones progesterone, aldosterone, corticosterone, deoxycorticosterone, testosterone, and 17α-methyltestosterone from blood plasma. Second, to compare the background from sample matrix between the resultant sample prep method to standard protein precipitation.

Experimental
Chromatographic (LC/MS/MS) Conditions

The chemical structures of the steroid hormones are shown in Figure 1. Initial evaluation was conducted using a mixture of steroid hormones to establish chromatographic conditions on Ascentis Express C18 column. The gradient profile was extended so matrix monitoring could be conducted for the processed plasma samples.

HybridSPE-Phospholipid Operating Principles

HybridSPE-Phospholipid technology combines simple, standardized methodology of protein precipitation with the specificity of solid phase extraction for the simultaneous removal of proteins and phospholipids from biological samples. The technology is based on hybrid zirconia-silica particles for targeted isolation of phospholipids, while PTFE frit materials act as a depth filter for efficient removal of precipitated protein particles. The zirconia portion of the hybrid particle behaves as a Lewis acid (electron acceptor) which interacts strongly with Lewis bases (electron donors), like the phosphate moiety of phospholipids. This technology allows for highly selective phospholipid matrix removal while remaining non-selective towards a broad range of analytes.2

Sample Prep Method Development: Factors that Impact Analyte Recovery

Sample prep method development consisted of establishing recovery of standard compounds from the HybridSPE-Phospholipid 96-well plates, then transferring those conditions for use with spiked plasma samples. Method optimization consisted of evaluating several precipitation solvent systems. Once sufficient analyte recovery was established for the plasma samples, the final portion of the study was to compare the HybridSPE-Phospholipid technique with the commonly accepted protein precipitation for phospholipid matrix removal.

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

NIR on the Range: Grazing Animal Nutrition
NIR on the Range: Grazing Animal Nutrition

January 16, 2015

Portable NIR spectroscopy of grazing animal feces ...

Oceans Help Predict a Wave of Climate Change
Oceans Help Predict a Wave of Climate Change

January 16, 2015

A fluorescence-based assay helps study carbon fixa...

Why They Choose FDGSi
Why They Choose FDGSi

February 17, 2015

Find out why companies choose F-DGSi

Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold
Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold

February 27, 2015

Comparison of Biotage® Extrahera™ vs...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.