Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2021 / PFAS Determination in Drinking Water

PFAS Determination in Drinking Water

10/06/2021

Share

Featured Image

1. Goal

To demonstrate an efficient and reliable solid-phase extraction method with the Thermo Scientific™ Dionex™ AutoTrace™ 280 PFAS Solid-Phase Extraction instrument for the determination of per- and poly-fluorinated compounds in drinking water per U.S. EPA Method 537.1

2. Introduction

Per- and polyfluorinated alkyl substances (PFAS) are a group of man-made chemicals including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and GenX chemicals that have been manufactured and used in a variety of industries globally.1,2 These compounds have a wide range of commercial product applications including industrial polymers, stain repellents, surfactants, waterproofing products, packaging, and aqueous film forming foams used for firefighting. PFAS are highly soluble in water, chemically stable, persistent in the environment, and can accumulate in the human body over time, leading to adverse human health effects.3 PFOA and PFOS are no longer manufactured in the U.S. due to their persistence and potential human health risks.

In November 2018, the United States Environmental Protection Agency (U.S. EPA) published Method 537.1 “Determination of selected per- and polyfluorinated alkyl substances in drinking water by solid phase extraction and LC/MS/MS”.4 The method uses an offline solid-phase extraction (SPE) with liquid chromatography tandem mass spectrometry (LC-MS/MS) to extract, enrich, and determine 18 PFAS in drinking water. Currently most testing laboratories perform the sample extraction manually using a vacuum manifold, which is labor-intensive, timeconsuming, and the flow rate through the cartridge is difficult to control. There is a high demand for automation of the SPE procedure.

In this application note, we discuss the development of an analytical method using an automated SPE system, AutoTrace 280 PFAS, and LC-MS/MS for determination of eighteen PFAS following the guidelines provided by U.S. EPA Method 537.1. We have demonstrated that the AutoTrace 280 PFAS instrument provides reliable automated SPE for determination of PFAS in large-volume (20 mL–4 L) aqueous samples.

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Removing User Bias from Structure Verification by NMR
Removing User Bias from Structure Verification by NMR

November 15, 2021

Chemical structure verification by NMR is one of t...

Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS
Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS

November 15, 2021

Detection of regulated genotoxic impurities from t...

HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®
HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®

November 15, 2021

How high does resolving power need to be?

Biomarker discovery
Biomarker discovery

November 16, 2021

Essential guide to analysing VOCs in breath and other biological samples...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.