Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2020 / Addressing the challenges of microplastic characterisation using thermal desorption

Addressing the challenges of microplastic characterisation using thermal desorption

10/06/2020

Share

Featured Image

In this application note, we demonstrate the quantitative analysis of microplastics using direct thermal desorption (TD) combined with gas chromatography–mass spectrometry (GC–MS). Direct desorption of filtrates containing microplastics provides a simple and streamlined sample preparation step while GC–MS analysis produces informationrich volatile organic compound (VOC) profiles. The VOC profiles contain marker compounds to identify and quantify the plastic, along with other chemical signatures that could prove useful in source apportionment, toxicity assessment and regional profiling.

Analysis of polyethylene terephthalate (PET) particles from bottled drinks is shown to deliver fast, reproducible, quantitative results, providing plastic concentrations in µg/L for particles as small as 0.3 µm in diameter.

Microplastics have been found to pollute our oceans, soil, air, drinking water and food. They are defined as particles or polymeric fibres 1 µm to 5 mm1 in diameter and come from a range of sources including clothing, bottles, food packaging, toys and vehicle tyres.

The potential threat to the environment and human health is driving the need for the standardised measurement and regulation of microplastics. In January 2019, ECHA (the European Chemicals Agency) proposed a restriction on the intentional use of microplastics in products placed on the European Union/European Economic Area market to avoid or reduce their release into the environment.2 The proposal is currently at the consultation phase.

A report by the World Health Organization (WHO), published in the same year, examines evidence related to microplastics in the water cycle (including tap and bottled water and its sources), the potential impact on health after exposure to microplastics and the removal of microplastics during wastewater and drinking water treatments.3 In the report, the WHO includes recommendations for taking action such as monitoring and managing microplastics in the environment.

>> Download the Full Application Note as a PDF

Newsletters

Receive the latest pathologist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Detection of residual pesticides on fruits and vegetables using Portability™ miniature mass spectrometer
Detection of residual pesticides on fruits and vegetables using Portability™ miniature mass spectrometer

June 9, 2020

Mass spectrometry can be now deployed for onsite pesticide screening in real time...

Routine monitoring of airborne VOCs using TD–GC×GC–TOF MS/FID
Routine monitoring of airborne VOCs using TD–GC×GC–TOF MS/FID

January 15, 2020

The identification and quantitation of volatile organic pollutants in air can be challenging, largely because of the complexity of the samples...

Quantifying trace odorants in water by GC–MS with trap-based preconcentration
Quantifying trace odorants in water by GC–MS with trap-based preconcentration

January 20, 2020

Assessing SPME and high‑capacity sorptive extracti...

Using Self-Aware Agilent InfinityLab LC/MSD iQ to Measure Trace-Level Impurities in a Brand Versus Generic Medication
Using Self-Aware Agilent InfinityLab LC/MSD iQ to Measure Trace-Level Impurities in a Brand Versus Generic Medication

January 22, 2020

This study presents a method for comparison of related impurities in a brand and a generic over-the-counter (OTC) acetaminophen drug...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.