Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2015 / An Improved SPE-LC-MS/MS Method for the Quantification of Bradykinin in Human Plasma Using the ionKey/MS System

An Improved SPE-LC-MS/MS Method for the Quantification of Bradykinin in Human Plasma Using the ionKey/MS System

06/11/2015

Share

Featured Image
Introduction

The need for robust and sensitive analysis of peptide species challenges both the chromatographic separation and mass spectrometry. Peptides in general are often difficult to analyze by LC-MS/MS, as mass spectrometer (MS) sensitivity is low due to the formation of multiple precursors and poor or overly extensive fragmentation, making liquid chromatography (LC) and sample preparation even more critical. A previous application note (720004833EN) described in detail the development of a fast, flexible analytical scale, SPE-LC-MS/MS method for the quantification of the peptide bradykinin (Figure 1) in human plasma for use as a biomarker in the preclinical or discovery setting.1 Accurate quantification of bradykinin in plasma is particularly challenging because it is present in low pg/mL levels, is rapidly metabolized, and is also artificially produced during blood sampling and sample preparation via proteolytic processes.2

Figure 1. Representative structure and amino acid sequence of bradykinin.

In this work, the LC-MS platform was updated to incorporate the use of ionKey/MS System which integrates the UPLC® analytical separation directly into the source of the MS (Figure 2). The iKey chromatographic separation device (150 μm ID), shown in Figure 3, contains the fluidic channel, electronics, ESI interface, heater, eCord, and the chemistry to perform UPLC separations. Additionally, this technology offers significant increases in sensitivity compared to 2.1 mm ID chromatography, making it ideal for peptide analyses. Most bioanalytical LC-MS/MS assays often consume high volumes of both solvent and sample, thus increasing the cost of the assay and limiting the number of replicates that can be analyzed. In addition to the sensitivity increase ionKey/MS System provides over the 2.1 mm diameter scale, it also reduces solvent and sample consumption and provides enough sample to perform multiple injections that may be required to meet incurred sample reanalysis (ISR) guidelines.

Figure 2. ionKey/MS System: comprised of the Xevo TQ-S, the ACQUITY UPLC M-Class, the ionKey source, and the iKey Separation Device.
Figure 3. iKey Chromatographic Separation Device.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

NIR on the Range: Grazing Animal Nutrition
NIR on the Range: Grazing Animal Nutrition

January 16, 2015

Portable NIR spectroscopy of grazing animal feces ...

Oceans Help Predict a Wave of Climate Change
Oceans Help Predict a Wave of Climate Change

January 16, 2015

A fluorescence-based assay helps study carbon fixa...

Why They Choose FDGSi
Why They Choose FDGSi

February 17, 2015

Find out why companies choose F-DGSi

Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold
Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold

February 27, 2015

Comparison of Biotage® Extrahera™ vs...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.