Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2021 / Authentication of Pisco

Authentication of Pisco

04/27/2021

Share

Featured Image

Validating authenticity, purity, alcohol content, and safety are common problems in the lucrative alcoholic beverage market, particularly when pricing is dependent on origin, variety, or alcohol content. The industry relies heavily on expert tasters and time-consuming analytical laboratory testing to combat substitution and adulteration, and needs better tools for field testing. Raman spectroscopy is stepping up to close this gap for Pisco, a premium Peruvian liquor, and has excellent potential to do the same for other spirits. Here we describe how one group at The Ohio State University are using 1064 nm Raman spectroscopy to distinguish between pure varieties and mixtures, and even identify the specific grape varietal. In addition to offering superior discrimination over UV-VIS, Raman also allowed quantification of both ethanol and methanol content in pisco, making it a well-rounded tool for quality assessment of spirits.

Pisco is a liquor (technically a brandy) originating from Peru, now growing in popularity worldwide. Pisco first made its name in the USA in the days of the California Gold Rush, brought by traders from Peru and immortalized by the likes of Mark Twain and Rudyard Kipling. In recent years it has enjoyed a reprise in the form of artisan cocktails. In Peru, however, pisco is much more. It is the national drink, a key export, and is important enough to Peruvian culture to merit its own holiday each July. Pisco production in Peru grew 34% between 2011 and 2015, and is forecasted to be at >14 million liters by 2025.

This colorless or slightly amber liquor is made from grapes developed and cultivated along the coasts of Peru, and varies in alcohol content from 38-48%. The production of Pisco is closely regulated by the National Institute for the Defense of Competition and the Protection of Intellectual Property (INDECOPI), which grants the official status of “Pisco” only when the liquor is produced in certain regions using specific varietals of grapes, and only under the provision that the traditional production practices have been used. With demand for Pisco growing worldwide, rapid analytical techniques are needed to ensure authenticity and deter attempts at counterfeiting.

>> Download the Full Application Note as a PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Removing User Bias from Structure Verification by NMR
Removing User Bias from Structure Verification by NMR

November 15, 2021

Chemical structure verification by NMR is one of t...

Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS
Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS

November 15, 2021

Detection of regulated genotoxic impurities from t...

HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®
HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®

November 15, 2021

How high does resolving power need to be?

Biomarker discovery
Biomarker discovery

November 16, 2021

Essential guide to analysing VOCs in breath and other biological samples...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.