Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2015 / Detection of contamination in DNA and protein samples by photometric measurements

Detection of contamination in DNA and protein samples by photometric measurements

10/02/2015

Share

Featured Image
Abstract

A solution of dsDNA was spiked with different amounts of protein. While the dsDNA concentration was kept constant, the concentration of added protein was increased in a step-wise fashion. The DNA/protein mixtures were then measured in the Eppendorf BioPhotometer® D30. Using the function “Purity Scan”, which is available for measurements of nucleic acids and protein, respectively, the influence of increasing protein contamination in a DNA solution was followed. For comparative purposes the changes in absorption behavior of protein samples in the presence of contamination was also recorded.

Introduction

Nucleic acid purification is a major application in a molecular laboratory. Purity and homogeneity of the sample are important considerations for subsequent applications. In practice, nucleic acids are purified with the help of commercially available kits which allow the separation of most other cellular components. However, the presence of proteins or other organic components in the eluate cannot be entirely ruled out. This is also directly related to the quality of the kit used. In the case where no kit is used for purification, additional contamination risks are posed by the chemicals used, e.g. phenol or ethanol from a phenol/chloroform extraction. Furthermore, this purification method typically yields all nucleic acids in a cell, not only the nucleic acid of interest. For example, a classic plasmid preparation without the RNase digestion step will yield approximately 90 % RNA [1]. In order to ensure minimum contamination of the sample it makes sense to verify its purity by spectrophotometric measurements, fluorimetry or agarose gel. After considering the effort involved, the first method is certainly the simplest to perform. For photometric determination of the concentration of a nucleic acid solution, absorbance is measured at 260 nm. Using a specific conversion factor, the concentration of the nucleic acid solution is calculated from the absorbance value. The following conversion factors (CF) are valid for an absorbance of 1 and for an optical path length of 1 cm:
dsDNA ≙ 50 μg/mL
RNA ≙ 40 μg/mL
ssDNA ≙ 33 μg/mL The concentration (C) of the respective nucleic acid is determined via the following formula: C = CF x A (A=Absorbance), which results from a conversion of Lambert-Beer’s law:
A=ε*C*d <> C=1/ ε *A. The optical path length of 1 cm may be directly integrated into the coefficient of absorbance. The conversion factor CF is derived from the reciprocal value of the coefficient of absorbance (1/ ε = CF).

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

NIR on the Range: Grazing Animal Nutrition
NIR on the Range: Grazing Animal Nutrition

January 16, 2015

Portable NIR spectroscopy of grazing animal feces ...

Oceans Help Predict a Wave of Climate Change
Oceans Help Predict a Wave of Climate Change

January 16, 2015

A fluorescence-based assay helps study carbon fixa...

Why They Choose FDGSi
Why They Choose FDGSi

February 17, 2015

Find out why companies choose F-DGSi

Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold
Comparison of Biotage® Extrahera™ vs. Manual Sample Processing Using a Vacuum Manifold

February 27, 2015

Comparison of Biotage® Extrahera™ vs...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.