Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2022 / Distinguishing oxidative impurities from ionizable lipids used in LNP formulations using electron activated dissociation

Distinguishing oxidative impurities from ionizable lipids used in LNP formulations using electron activated dissociation

11/14/2022

Share

Featured Image

In this technical note, the comprehensive characterization of impurities from the ionizable lipid (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraene-19-yl-(dimethylamino)butanoate, commonly known as DLin-MC3-DMA (MC3), is presented. Deep structural elucidation, including the localization of different oxidation products and saturation of double bonds in MC3, was achieved using EAD.

Lipid nanoparticles (LNPs) that are comprised of ionizable lipids are used to deliver oligonucleotides to work as therapeutics or to stimulate the immune system, as in the initial mRNA-based COVID vaccines. A recent study reported that N-oxidation of ionizable lipids might lead to covalent modification of ribonucleotides and a loss of mRNA potency.1 To ensure product quality, detailed and sensitive characterization of the ionizable lipid and its related impurities is necessary. However, obtaining the level of detail needed is challenging with current liquid chromatography-mass spectrometry (LC-MS)-based methodologies. Collision-induced dissociation (CID) provides head group and acyl or alkyl chain sum composition information but does not provide structural details. Data from alternative fragmentation techniques can help localize double bond positions within acyl or alkyl chains but alternative methods suffer from inefficient fragmentation, especially for singly charged species. They require long duty cycles or collision cell modifications to allow for the introduction of ozone. Only EAD has efficiently provided complete characterization of different naturally occurring lipids in a single LC-MS run.

Here, the applicability of this novel fragmentation mode for the detailed characterization of lipids used for LNPs was tested using MC3 and its related impurities as a model. Within a single experiment, the exact locations of oxygen incorporation of 2 isomeric species and the double bond reduction of another related impurity were pinpointed using the unique fragment ions produced by EAD. This information can be used to determine drug efficacy and safety from formulated LNPs. Additionally, it can be used to aid rational design of new synthetic lipids.

>> Download the Application Note as a PDF

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Optimizing metal powders for Isostatic Pressing
Optimizing metal powders for Isostatic Pressing

January 4, 2022

Isostatic pressing has several benefits over the c...

Monitoring respirable silica at workplace
Monitoring respirable silica at workplace

January 5, 2022

Stringent regulations of occupational exposure to ...

Analytical toolkit for the optimization of battery electrode materials
Analytical toolkit for the optimization of battery electrode materials

January 7, 2022

Modern batteries like lithium-ion have revolutioni...

Analysis of catalytic ink for proton exchange membrane fuel cells (PEMFC’s)
Analysis of catalytic ink for proton exchange membrane fuel cells (PEMFC’s)

January 10, 2022

Catalytic inks are the key component when balancin...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.