Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2020 / High-quality in operando x-ray diffraction analysis of pouch bag lithium-ion batteries

High-quality in operando x-ray diffraction analysis of pouch bag lithium-ion batteries

09/25/2020

Share

Featured Image

The data and method described in this application note resulted from a common work of Dr. Stefan Seidlmayer (TU München) and Armin Kriele (Helmholtz Zentrum Geesthacht) from the Heinz Maier-Leibnitz Zentrum, MLZ in Garching (Germany). The MLZ is a neutron research facility open for user experiments in science and industrial application.

Introduction

Lithium-ion batteries have become increasingly important in key technologies of our day-to-day lives. Especially the long-term performance of batteries is crucial for their applications in new markets such as energy storage in electric vehicles or even large-scale electric storage devices combined with photovoltaic energy sources.

For these large-scale applications a key requirement is very good long-term and cycling performance. Improvement of this performance requires studying ongoing aging processes inside batteries continuously and without the need to destroy and disassemble them prior to the analysis (in operando analysis). This is especially important as many cell components deteriorate due to the disassembly process or when exposed to air or moisture.

Often X-ray synchrotron or neutron radiation based methods are used in this context [1-4]. The strengths of these methods are their high penetration capabilities and their ability to use specially encapsulated samples or even industrially manufactured samples directly. Nevertheless, a drawback of these methods is the restricted access as they are only available at large-scale research facilities and obtaining the required beam time is typically a longer process.

While neutron scattering is very sensitive to light elements such as Li, X-ray powder diffraction provides a much higher resolution of the cell parameters and therefore both are complementary techniques. A large variety of experimental cells for XRD studies has been developed such as specially adapted coin cell type batteries for reflection geometry. Typically XRD setups of lab diffractometers are based on using copper radiation and rely on using so-called ‘half-cells’, containing only one active electrode while the other electrode is then only a thin foil  of lithium metal. Although this is adequate to study the principal transformation mechanism and the corresponding structural changes of the electrode active material via diffraction methods, it is insufficient for studying complex aging processes. These depend heavily on even the smallest changes in cell chemistry and material composition and require monitoring the structural evolutions of both electrodes at the same time. For such aging studies one cannot rely on half-cell studies but has to observe the cells under real operating conditions in their native environment.

The pouch bag cell design offers this possibility. It is easy to manufacture reproducibly. It is versatile enough for experimental changes and offers the possibility to use all standard battery grade materials and components. An industrial prototype can be assembled for the continuous monitoring of cells subjected to different aging procedures. In synchrotron beam lines such pouch cells have already been used successfully [5]. The battery research group headed by Dr. habil. Ralph Gilles (TU München) at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching (Germany) has adapted and further developed this method in order to use standardized pouch cells for diffraction experiments on a lab XRD instrument like the Empyrean using hard X-ray radiation. This allows investigation of the structural dynamics of fully closed pouch bag type batteries as used as industrial prototype samples during typical aging procedures directly and without any prior dismantling.

>> Download the Full Application Note as a PDF

Newsletters

Receive the latest pathologist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Detection of residual pesticides on fruits and vegetables using Portability™ miniature mass spectrometer
Detection of residual pesticides on fruits and vegetables using Portability™ miniature mass spectrometer

June 9, 2020

Mass spectrometry can be now deployed for onsite pesticide screening in real time...

Routine monitoring of airborne VOCs using TD–GC×GC–TOF MS/FID
Routine monitoring of airborne VOCs using TD–GC×GC–TOF MS/FID

January 15, 2020

The identification and quantitation of volatile organic pollutants in air can be challenging, largely because of the complexity of the samples...

Quantifying trace odorants in water by GC–MS with trap-based preconcentration
Quantifying trace odorants in water by GC–MS with trap-based preconcentration

January 20, 2020

Assessing SPME and high‑capacity sorptive extracti...

Using Self-Aware Agilent InfinityLab LC/MSD iQ to Measure Trace-Level Impurities in a Brand Versus Generic Medication
Using Self-Aware Agilent InfinityLab LC/MSD iQ to Measure Trace-Level Impurities in a Brand Versus Generic Medication

January 22, 2020

This study presents a method for comparison of related impurities in a brand and a generic over-the-counter (OTC) acetaminophen drug...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.