Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.

Improved characterisation of malodours in recycled plastics using TD–GC×GC with BenchTOF2 MS

Introduction

The analysis of plastic has gained increased attention in recent years, due to the global push to move to a circular economy (the increased use of recycled materials to reduce waste). Manufacturers are being urged to produce or use more post-consumer recycled (PCR) plastics, especially for food and beverage packaging.

PCR plastics require more rigorous quality control (QC) measures to ensure that they will not produce volatile emissions that could be considered harmful or have a negative impact on the packaged product (e.g., malodours).

However, there are several limitations with the existing methods used for the detection of odours from plastics.

  • A human sensory panel is a sensitive approach, but it is also subjective, time-consuming and requires skilled individuals. In addition, it is restricted to sensory information: no chemical identities are provided, so sensory panels cannot identify a possible source or clean-up process to eliminate the malodour.
  • The electronic nose (eNose) is faster and simpler to use as it is a handheld device with sensor technology. However, the technique is not specific, meaning that samples that fail QC testing must undergo further analytical investigation.
  • Gas chromatography coupled with mass spectrometry (GC–MS) can provide a more quantitative approach but may struggle to fully resolve all the volatile organic compounds (VOCs). Typically, the odour profiles are dominated by aliphatics from the polymer itself, which easily mask the trace-level odorants (e.g., oxygenated species). Traditional quadrupole MS must operate in scan mode to find these non-target components, but this limits the sensitivity of the instrument. Additionally, common sample introduction techniques, such as headspace injection and solid-phase microextraction (SPME), may lack the necessary sensitivity to capture the trace odorants.
Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE!

Login
Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

Related Application Notes
Hard seltzer analysis using high-capacity sorptive extraction with GC

| Contributed by Markes International Ltd

PFAS analysis in air using cryogen-free thermal desorption and GC–MS

| Contributed by Markes International Ltd

Mount Royal University team uses GC×GC–TOF MS to gather data to increase conviction rates in wildfire arson cases

| Contributed by SepSolve Analytical

Related Webinars
Techniques & Tools Spectroscopy
The Analytical Spectroscopy Technology Forum

| Sponsored by WITec GmbH, Bruker Optics, Hamamatsu Photonics Europe GmbH, and DRS Daylight Solutions

Techniques & Tools Liquid Chromatography
The Next-Level LC-MS Technology Forum

| Sponsored by ACD Labs, Agilent, Tosoh and Andrew Alliance (Waters)

Techniques & Tools Liquid Chromatography
The Extreme HPLC Technology Forum

| Sponsored by Pall, Phenomenex, SilcoTek and VICI

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register