Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2021 / Quantification of Phthalates in CE & RoHS Compliance Testing

Quantification of Phthalates in CE & RoHS Compliance Testing

07/21/2021

Share

Featured Image

The requirements for a CE mark now include the requirements for RoHS compliance, which consists of the disclosure of 4 phthalates: Bis(2-Ethylhexyl) phthalate (DEHP), Benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), Diisobutyl phthalate (DIBP). A quantification method is defined in IEC 62321- 8 by a TD (Thermal Desorption)-GC-MS technique. The CDS 6150 Pyroprobe is a multi-function thermal sample injection system for GC-MS, meeting and exceeding the RoHS phthalates testing requirements.

Table 1 shows the RSD (n=8) averaged at 3.2 percent, 3 times better than the method requirement, with MDLs all below 25 ppm, 4 times better than the method requirement.

Figure 1: Single point calibration and chromatograms (TIC and EICs) for the four phthalates.
Figure 2: Single point calibration and chromatograms (TIC and EICs) for the four phthalates.

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Removing User Bias from Structure Verification by NMR
Removing User Bias from Structure Verification by NMR

November 15, 2021

Chemical structure verification by NMR is one of t...

Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS
Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS

November 15, 2021

Detection of regulated genotoxic impurities from t...

HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®
HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®

November 15, 2021

How high does resolving power need to be?

Biomarker discovery
Biomarker discovery

November 16, 2021

Essential guide to analysing VOCs in breath and other biological samples...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.