Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Subscribe to Newsletter

Spectral Phenotyping of Physiological and Anatomical Leaf Traits Related with Maize Water Status

Advancements in phenotyping techniques capable of rapidly and nondestructively detecting impacts of drought on crops are necessary to meet the 21st-century challenge of food security. Here, we describe the use of hyperspectral reflectance to predict variation in physiological and anatomical leaf traits related with water status under varying water availability in six maize (Zea mays) hybrids that differ in yield stability under drought. We also assessed relationships among traits and collections of traits with yield stability. Measurements were collected in both greenhouse and field environments, with plants exposed to different levels of water stress or to natural water availability, respectively. Leaf spectral measurements were paired with a number of physiological and anatomical reference measurements, and predictive spectral models were constructed using a partial leastsquares regression approach. All traits were relatively well predicted by spectroscopic models, with external validation (i.e. by applying partial least-squares regression coefficients on a dataset distinct from the one used for calibration) goodness-of-fit (R2) ranging from 0.37 to 0.89 and normalized error ranging from 12% to 21%. Correlations between reference and predicted data were statistically similar for both greenhouse and field data. Our findings highlight the capability of vegetation spectroscopy to rapidly and nondestructively identify a number of foliar functional traits affected by drought that can be used as indicators of plant water status. Although we did not detect trait coordination with yield stability in the hybrids used in this study, expanding the range of functional traits estimated by hyperspectral data can help improve trait-based breeding approaches.

Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE!

Login
Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

Related Application Notes
Diamond Layers Analysis by Raman and FTIR Spectroscopy

| Contributed by Bruker

The INVENIO FTIR Spectrometer

| Contributed by Bruker

Looking into Batteries with RISE Microscopy

| Contributed by WITec

Most Popular
Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register