Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Fields & Applications Sample Preparation, Microscopy, Technology, Food, Beverage & Agriculture, Pharma & Biopharma, Clinical

Overview of Key Principles of Dynamic Light Scattering to protein therapeutic formulations – Part 2

Overview of Key Principles of Dynamic Light Scattering to protein therapeutic formulations

Part 2

This four-part series examines common issues and questions surrounding the principles, measurements and analysis of DLS data and discusses how to minimize the time required for and increase the accuracy of acquiring and interpreting DLS data during the biotherapeutic development process.

In Part Two, we cover the influence of concentration effects and particle interactions on DLS results and provide a roadmap for identifying and distinguishing each type of concentration effect.

A Malvern Instruments' Bioscience Development Initiative

Executive Summary

Dynamic light scattering (DLS) is an analytical technique used to measure the particle size distribution of protein formulations across the oligomer and sub-micron size ranges of approximately 1 nm to 1 µm.  The popularity of DLS within the biopharmaceutical industry is a consequence of its wide working size and extended sample concentration ranges, as well as its low volume requirements.  With that said, the challenge that remains with the application of DLS to protein therapeutic formulations is centered around data interpretation.  In this four-part white paper series, common issues and questions surrounding the principles, measurements and analysis of DLS data are discussed in order to help minimize the time required for and complexity of acquiring and interpreting DLS data that is critical throughout the development process.  In this second white paper of the series, we cover the influence of concentration effects and particle interactions on DLS results and provide a roadmap for identifying and distinguishing each type of concentration effect.

Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register