Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2013 / A Single-Column Application. For the GC Determination of Benzene in Reformulated Gasoline using a Supelco SLB-IL111 Ionic Liquid Column

A Single-Column Application. For the GC Determination of Benzene in Reformulated Gasoline using a Supelco SLB-IL111 Ionic Liquid Column

09/19/2013

Share

Featured Image
App-Note067-supelco-fluka
Introduction

The amount of benzene in gasoline is a concern because it is a known human carcinogen, and exposure to it has been linked to detrimental health effects. The challenge with the analysis lies in the complex composition of gasoline, which consists of hundreds of different compounds. Reformulated gasoline also contains additives to produce more complete combustion and subsequent lower emissions of harmful compounds. These additives accomplish this by boosting the oxygen content, and are commonly referred to as "oxygenates". Ethanol is a commonly used oxygenate. Therefore, to measure benzene in reformulated gasoline, it must be resolved from the C5-C12 aliphatic portion, other aromatics, ethanol and any method required internal standards. This typically requires the use of a two-column switching procedure1.

sigma-aldrich logo

Analysis of a reformulated gasoline sample on the extremely polar SLB®-IL111 capillary column resulted in the elution of benzene after the aliphatic portion, and also resolution of benzene and ethanol. Additionally, the phase stability of the SLB-IL111 column exhibits a stable baseline when subjected to a temperature ramp. Because this column can be used up to 270 °C, it also allows the timely elution of the heavy aromatic constituents in gasoline. These observations indicate that the SLB-IL111 may be an effective alternative to the two-column switching procedure currently required for the determination of benzene and other aromatics in reformulated gasoline.

App-Note067-sigma-fig2
App-Note067-sigma-fig3
App-Note067-sigma-fig4
Reference:
  1. ASTM D3606, Benzene and Toluene in Unleaded Gasoline and Aviation Fuel.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE<sup>®</sup> Myco prior to LC-MS/MS Analysis
Extraction of Multiple Mycotoxins From Grain Using ISOLUTE<sup>®</sup> Myco prior to LC-MS/MS Analysis

April 25, 2013

This application note describes a Solid Phase Extraction (SPE) protocol for the extraction of a range of mycotoxins from wheat flour, wheat, maize and barley using ISOLUTE® Myco with LC-MS/MS...

Analysis of 18 Polycyclic Aromatic Hydrocarbons in Soil Using the QuEChERS Method
Analysis of 18 Polycyclic Aromatic Hydrocarbons in Soil Using the QuEChERS Method

April 29, 2013

The use of QuEChERS dispersive SPE as a simple, fast, and quantitative sample preparation method is demonstrated for the GC-MS analysis of 18 polycyclic aromatic hydrocarbons (PAHs) in soil...

Analysis of Low Level Pyrethroid Pesticides in Water
Analysis of Low Level Pyrethroid Pesticides in Water

April 29, 2013

A method for the determination of pyrethroids in water at ultra-low-level concentrations of 0...

Determination of Phthalates in Drinking Water by UHPLC with UV Detection
Determination of Phthalates in Drinking Water by UHPLC with UV Detection

April 29, 2013

To develop an efficient high-performance liquid chromatography (HPLC) method for the simultaneous determination of 19 phthalate compounds in drinking water...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.