Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2013 / Using Hydrogen as a Carrier Gas for GC

Using Hydrogen as a Carrier Gas for GC

07/19/2013

Share

Featured Image
Choosing a Carrier Gas for GC

The aim within the laboratory should be to achieve the best separation in the shortest time period. The most commonly used gases as carrier gas for GC are nitrogen, hydrogen and helium.The differences between the gases are evident when comparing their van Deemter curves. This is illustrated in the Van Deemter Equation (Figure 1).

Peak Logo
The Van Deemter EquationFigure 1: The Van Deemter Equation

Although it displays the lowest minimum plate height compared with that of helium or hydrogen, nitrogen has a much narrower velocity range and a steeper van Deemter curve, so at higher flow rates, solute efficiency drops off dramatically (Figure 1). Analysis times with helium are about 1/2 the value when using nitrogen and there is only a very small sacrifice in efficiency. The helium Van Deemter curve is much flatter than the nitrogen curve, thus changes in the average linear velocity do not decrease efficiency by a large amount. Hydrogen is the fastest carrier gas (uopt), with an optimum linear velocity of 40cm/sec, and exhibits the flattest Van Deemter profile. Hydrogen’s high uopt (optimal linear velocity) results in the shortest analysis times. Also, the wide range over which high efficiency is obtained makes hydrogen the best carrier gas for samples containing compounds that elute over a wide temperature range.Although Nitrogen, Helium and Hydrogen can all be considered suitable carrier gases for use in GC, historically helium has been the most widely used due to the safety concerns associated with hydrogen and also the fact that nitrogen is much less efficient! 

Why Change from Helium

The emerging helium shortage means that people have no choice but to look at other alternatives. Are we running out of Helium completely? No, not quite yet but a shortage of helium and increased demand within the medical, scientific and industrial fields is leading to this rare commodity rising in price. Many leading GC Manufacturers understand the impact this may have in the laboratory and have started to actively recommend switching your carrier gas from Helium to Hydrogen.

Using Hydrogen as a Carrier Gas for GC

There are major benefits of using Hydrogen as your carrier gas:

  • Increased speed: increasing the linear flow rate allows for shorter run times, thereby increasing the throughput of your laboratory.
  • Lower temperature separations: at the faster elution times, it may not be necessary to increase the column temperature run rate. It may even be possible to lower the maximum temperature needed for the analysis.
  • Longer column life: lower temperatures lead to less column bleed, which in turn can mean a longer column life. In addition, hydrogen is a reducing gas and can remove potential acidic sites off the column, further increasing column life!
  • Availability: Hydrogen is readily available through the electrolysis of water and with a Peak Gas Generator it can be generated on demand.
  • Hydrogen gas is already being used in the laboratory for a variety of purposes: It is the fuel gas for the most commonly used detectors (FID) and therefore already present in most GC Labs.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE<sup>®</sup> Myco prior to LC-MS/MS Analysis
Extraction of Multiple Mycotoxins From Grain Using ISOLUTE<sup>®</sup> Myco prior to LC-MS/MS Analysis

April 25, 2013

This application note describes a Solid Phase Extraction (SPE) protocol for the extraction of a range of mycotoxins from wheat flour, wheat, maize and barley using ISOLUTE® Myco with LC-MS/MS...

Analysis of 18 Polycyclic Aromatic Hydrocarbons in Soil Using the QuEChERS Method
Analysis of 18 Polycyclic Aromatic Hydrocarbons in Soil Using the QuEChERS Method

April 29, 2013

The use of QuEChERS dispersive SPE as a simple, fast, and quantitative sample preparation method is demonstrated for the GC-MS analysis of 18 polycyclic aromatic hydrocarbons (PAHs) in soil...

Analysis of Low Level Pyrethroid Pesticides in Water
Analysis of Low Level Pyrethroid Pesticides in Water

April 29, 2013

A method for the determination of pyrethroids in water at ultra-low-level concentrations of 0...

Determination of Phthalates in Drinking Water by UHPLC with UV Detection
Determination of Phthalates in Drinking Water by UHPLC with UV Detection

April 29, 2013

To develop an efficient high-performance liquid chromatography (HPLC) method for the simultaneous determination of 19 phthalate compounds in drinking water...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.