Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2014 / A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates

A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates

11/19/2014

Share

Featured Image
Abstract

Due to rapid growth in the medical cannabis industry, demand is increasing for analysis of residual solvents in cannabis concentrates in order to protect consumer safety. This application note details a simple, fast test for common residual solvents using full evaporation technique headspace GC-FID and an Rxi®-624Sil MS column.

RESTEK_Logo_222
13614-app-note-restek-main
Introduction
As the popularity of cannabis concentrates increases, consumer safety concerns are resulting in the establishment of new regulations to control the level of residual solvents in commercial cannabis concentrates. The State of Colorado, for example, published allowable concentrations of certain residual solvents in Rule R 712. This is because, although cannabis concentrates can be produced in numerous ways, one of the most common means of extracting therapeutic compounds, like tetrahydrocannabinol (THC), cannabidiol (CBD), and terpenes, from cannabis is through extraction with an organic solvent, such as butane. After the cannabinoids and terpenes are extracted from the plant material, the organic solvent is allowed to evaporate and then is purged off using heat and/or vacuum. These extraction solvents can be difficult to purge completely, so the finished product needs to be tested to ensure that residual solvents are only present at or below safe levels. For consumer safety, especially with medicinal products, accurate and comprehensive analysis of residual solvents is necessary for concentrates and extracts.Since residual solvents are extremely volatile, they cannot be analyzed by HPLC and lend themselves nicely to GC analysis. One of the most common and reliable ways to quantify residual solvents is through headspace gas chromatography–flame ionization detection (GC-FID). Headspace injection works by driving volatile compounds of interest from the sample into a gas phase in the headspace of the vial above the sample. An aliquot is then withdrawn from the headspace of the vial and analyzed by GC-FID in order to determine the volatile components of the sample. One approach for headspace GC-FID that is particularly useful for analyzing cannabis concentrates is the full evaporation technique (FET). FET sample preparation involves the use of a very small sample amount (e.g., 20–50 mg), which effectively creates a single-phase gas system in the headspace vial at equilibrium [1]. FET is ideal for difficult and varied matrices like cannabis concentrates because it eliminates matrix interferences that can cause inaccurate quantification, and it also has the advantages of little to no manual sample handling and a very small sample size. Additionally, high sensitivity can be achieved through the creation of a single-phase system in the headspace vial. Figure 1 illustrates the basic principle of headspace GC using the full evaporation technique.
13614-app-note-restek-fig1Figure 1: Setup and Basic Principle of FET Headspace Injection Coupled With GC-FID Analysis
The work described here demonstrates the viability of FET headspace injection and GC-FID analysis of residual solvents in cannabis concentrates. The method is simple to implement, quick to run, and does not require expensive dynamic headspace equipment or mass spectrometric detectors. While the methodology presented here is suitable for residual solvents in cannabis concentrates, it is not applicable for finished tinctures in alcohol. Finished alcohol tinctures contain large amounts of alcohol which will severely interfere with quantification of other residual solvents in the sample. Therefore, an alternate approach is required for alcohol tinctures. This technique also may be applicable for oil or glycerin tinctures; however, it has not been evaluated for that use.
>> Download the full Application Note as PDF

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Comprehensive Analysis of Drug Residues from a Confiscated Pipe
Comprehensive Analysis of Drug Residues from a Confiscated Pipe

May 1, 2014

This application note shows the utility of high resolution mass spectrometry with soft ionization to facilitate identification of unknown compounds which were present in extracted residues from a confiscated pipe...

Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms
Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms

May 6, 2014

In this application, the Quick, Easy, Cheap, Effective, Rugged, Safe (QuEChERS) approach was used to develop an extraction and cleanup method for the analysis of seven neonicotinoid pesticides in flower blossoms...

Ultrapure water: LC-MS suitability tests
Ultrapure water: LC-MS suitability tests

May 7, 2014

Fresh ultrapure water used in all the experiments was produced from a Milli-Q® water purification system fed by an Elix system...

GC/MS analysis of a complex sample in DCM using hydrogen carrier gas
GC/MS analysis of a complex sample in DCM using hydrogen carrier gas

May 8, 2014

This application note aims to demonstrate the injection of a complex, 76-component sample diluted in Dichloromethane (DCM) using hydrogen carrier gas...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.