Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2014 / High resolution Saccharide and Polysaccharide Analysis using Small Particles

High resolution Saccharide and Polysaccharide Analysis using Small Particles

12/15/2014

Share

Featured Image
Summary

The PSS SUPREMA column with a reduced particle size of 5 μm offers a significant improvement in performance compared to traditional 10 μm materials and provides outstanding additional resolution, especially in the low molecular weight area, which is a major consideration when analyzing oligomeric polysaccharides.

pss logo
Introduction

Polysaccharides are very important in nature, occurring in food (starches in rice, wheat etc.) and plants (cellulose). Some polysaccharides are also produced commercially e.g. Dextrans, which are manufactured through the fermentation of sugar solutions. These are higher molar mass polysaccharides. Dextrans are used in clinical and technical applications, where molecular weight is critical in determining the properties of the final product. Accurate determination of the molecular weight distribution is vital.On the other hand, low molar mass saccharides are also very common e.g. in food, such as fruits, honey and sweets. Examples for low molar mass sugars are mono- (glucose, fructose), di-(lactose, isomaltose, trehalose) and trisaccharides (maltotriose, isomaltotriose). The separation and identification of low molar mass polysaccharides is a challenge as the compounds have the same chemical formula and only small differences in structure, e.g disaccharides maltose, isomaltose, gentiobiose cellobiose and trehalose C12H22O11.

app-note-144-14-pss-column
System Requirements
app-note-144-14-table.1
Procedure, Results & Discussion

A high resolution and therefore a good separation is necessary for a precise analysis. This is particularly important when new analytical LC coupling methods like GPC/SEC-ESI-MS are used, as the MS detector requires the columns to have a much higher resolution power within an overall smaller column volume. The reduction of the particle size results in a higher resolution (compare Figure 1). Therefore PSS developed the PSS SUPREMA 5 μm columns, to replace the standard columns with larger particle sizes traditionally used in aqueous GPC/SEC. PSS SUPREMA columns can be used for numerous neutral and anionic aqueous applications in the molecular weight area between 100 Da to around 5 million Da. The columns are available in analytical (ID: 8mm) and micro (ID: 4.6mm) dimensions with different porosities. Linear or mixed columns are also available.

app-note-144-14-fig.1Fig. 1: Comparison of the separation of a low molar mass Dextran T1 on a traditional aqueous column (black curve) compared to separations on one (blue) and two (green) SUPREMA 5 μm.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Comprehensive Analysis of Drug Residues from a Confiscated Pipe
Comprehensive Analysis of Drug Residues from a Confiscated Pipe

May 1, 2014

This application note shows the utility of high resolution mass spectrometry with soft ionization to facilitate identification of unknown compounds which were present in extracted residues from a confiscated pipe...

Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms
Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms

May 6, 2014

In this application, the Quick, Easy, Cheap, Effective, Rugged, Safe (QuEChERS) approach was used to develop an extraction and cleanup method for the analysis of seven neonicotinoid pesticides in flower blossoms...

Ultrapure water: LC-MS suitability tests
Ultrapure water: LC-MS suitability tests

May 7, 2014

Fresh ultrapure water used in all the experiments was produced from a Milli-Q® water purification system fed by an Elix system...

GC/MS analysis of a complex sample in DCM using hydrogen carrier gas
GC/MS analysis of a complex sample in DCM using hydrogen carrier gas

May 8, 2014

This application note aims to demonstrate the injection of a complex, 76-component sample diluted in Dichloromethane (DCM) using hydrogen carrier gas...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.