Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2018 / Gene Therapy Research Characterization Using DLS and Zeta Potential

Gene Therapy Research Characterization Using DLS and Zeta Potential

05/23/2018

Share

Featured Image

Abstract

The use of antibodies, either covalently attached onto the surface of neutral and anionic liposomes or used in a complex, is also being investigated. Zeta potential measurements are being used to develop the most efficient formulations of liposomes, peptides, DNA complexes for transfection studies in vivo and in vitro.

Introduction

Gene therapy is the process by which genetic material is delivered, by means of a vector, to patients for a therapeutic purpose. Vectors are delivery vehicles - usually a virus or a liposome - used to transport the genetic material to target cells in the body.

Both cationic and anionic liposomes are currently being investigated as vectors for gene therapy and their effectiveness in transfection is being studied by research groups and pharmaceutical companies.

Cationic liposomes (positively charged) are complexed with DNA (plasmids) Fig. 1. The liposome:DNA ratio is seen to be essential for optimal transfection.

Figure 1 Cationic liposomes (positively charged) are complexed with DNA (plasmids)
Zeta potential measurements can be used to optimise the ratio required for particular liposomes with various plasmids Fig 2. The plot also shows the zaverage diameters of the complex formed at various plasmid:liposome ratios obtained from photon correlation spectroscopy (PCS) measurements. When the complex has either a high negative or positive zeta potential, the size is around 90nm.
Figure 2 Zeta potential measurements can be used to optimise the ratio required for particular liposomes with various plasmids
However, when the zeta potential approaches the iso-electric point, the zaverage diameter increases indicating aggregation of the complex. Zeta potential measurements in conjunction with PCS sizing measurements allows for detailed characterisation of such plasmid: liposome complexes.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Download the latest Lab Trends Report
Download the latest Lab Trends Report

January 8, 2018

To better understand the view from the lab, we asked nearly 500 scientists some searching questions...

Confocal Raman Imaging – Depth profiling of polymer films and coatings
Confocal Raman Imaging – Depth profiling of polymer films and coatings

January 16, 2018

This application note demonstrates how confocal Raman imaging is capable of acquiring depth profiles of polymers coatings that allow individual layers to be distinguished and measured...

Real-Time Speciation of Ethylbenzene from the Xylenes Using Direct MS
Real-Time Speciation of Ethylbenzene from the Xylenes Using Direct MS

January 18, 2018

This application note describes how selected ion flow tube mass spectrometry (SIFT-MS) readily achieves real-time speciation of the xylenes from ethylbenzene...

Monitoring and Controlling the Electrode Particle Characteristics and Viscosity of Battery Slurries
Monitoring and Controlling the Electrode Particle Characteristics and Viscosity of Battery Slurries

January 26, 2018

Using Morphologi G3 to monitor and control the electrode particle characteristics and viscosity of battery slurries...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.