Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2019 / Analysis of Residual Pesticides and Mycotoxins in Cannabis Using UPLC-MS/MS and GC-MS/MS to Meet California Regulatory Requirements

Analysis of Residual Pesticides and Mycotoxins in Cannabis Using UPLC-MS/MS and GC-MS/MS to Meet California Regulatory Requirements

02/18/2019

Share

Featured Image

The increased use of both medical and recreational cannabis in combination with its expanding legal acceptance in several US states1 has led to demanding cannabis safety and quality control testing. Analytical testing typically includes cannabinoids profiling/potency, mycotoxins, terpenes, residual solvents, metals, and pesticide residues analysis. Pesticides are of particular interest as they are widely used in the cultivation of cannabis plants to safeguard against harmful insects and to promote crop yields. The application of pesticides is strictly regulated,2 and their residues in cannabis products are closely monitored by state regulatory agencies in order to protect consumers. The number of regulated pesticides that are required to be monitored varies by state as do the action limits which range from 0.01 μg/g (10 ppb) to above 1 μg/g (1 ppm).

In addition to pesticides, cannabis intended for inhalation, ingestion, or topical application must also be tested for mycotoxins. Mycotoxins, including aflatoxins and ochratoxins, are naturally occuring toxins produced by certain strains of mold. This mold, or mycotoxin contamination, can occur during either cultivation or storage and the toxins produced present a serious health risk to consumers. Routine testing for mycotoxins at low levels is critical to ensure the health of consumers, particularly those who may already have compromised health. As with pesticides, a robust and rapid test is critical and single simultaneous test for pesticides and mycotoxins is ideal.

Multi-residue compound detection is routinely performed using tandem quadrupole mass spectrometry (MS/MS) in combination with liquid chromatography (LC) and gas chromatography (GC). Both LC-MS/MS and GC-MS/MS are commonly used for multi-residue pesticide analysis as some residues are only amenable to either LC or GC. Tandem quadrupole MS is the detector of choice as it provides high sensitivity and selectivity for simultaneous analysis of hundreds of pesticides at low ng/g (ppb) levels in a single analysis.

In this application note, we present the use of a simple sample extraction and dSPE cleanup where the resulting extract is analyzed by UPLC-MS/MS and/or GC-MS/MS for rapidly monitoring pesticides and mycotoxins in cannabis matrix to meet California regulations. With the variety of residues to be monitored as well as the continued possibility of new ones being added, method generation can be a tedious task. In this study, full analytical methods full analytical methods including LC, GC and MS methods were utilized from Quanpedia eliminating the need for method development for the California pesticide and mycotoxin lists.

>> Download the full Application Note as PDF

Kim Tran,1 Kari Organtini,1 Marian Twohig,1 Michael Young,1 Gareth Cleland,1 Ken Rosnack,1 Naren Meruva,1 Gordon Fujimoto,2, Rebecca Stevens,3 James Roush,3 and Christopher Hudalla3
1 Waters Corporation, Milford, MA, USA; 2 Waters Corporation, Beverly, MA, USA; 3 ProVerde Laboratories, Milford, MA, USA

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Ionic impurities in drug products – USP proposes new ion chromatography method
Ionic impurities in drug products – USP proposes new ion chromatography method

January 21, 2019

Chloride and sulfate are common impurities present in drug substances and drug products...

Decoding Dangerous Drinks with a Spectral Sensor
Decoding Dangerous Drinks with a Spectral Sensor

January 24, 2019

Have you ever heard that moonshine will make you go blind? Today, even your favorite, top-shelf liquor may be just as much of a risk...

Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture
Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture

January 24, 2019

While electric vehicles are becoming more mainstream the use of traditional gasoline engines will have a place in society for decades to come...

Cleaning Up IPA Production with Stage-by-Stage MIR Analysis
Cleaning Up IPA Production with Stage-by-Stage MIR Analysis

January 24, 2019

2-Propanol is one of the most common solvents in the world, with over 2 million tons produced in 2003 (Science)...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.