Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2019 / Using Predicted 13C NMR Spectra with Open Resources for Structure Dereplication

Using Predicted 13C NMR Spectra with Open Resources for Structure Dereplication

02/21/2019

Share

Featured Image

Over the past two decades, market pressure has led to increased demands for development of New Molecular Entities (NME’s).1 In response, the pharmaceutical industry has attempted to accelerate this by implementing more efficient, higher volume techniques into development procedures. These include, high-throughput screening, parallel synthesis, and absorption, distribution, metabolism, and excretion toxicology (ADMET) predictions. Natural product discovery programs reveal chemical diversity that can complement high-throughput screening efforts. However, this is only worthwhile if the active components in natural product mixtures can be reliably separated and quickly identified. The practice of screening active compounds early in the development process for recognizing and eliminating known compounds is called dereplication. This enables scientists to focus on testing truly ‘unknown’ compounds.

There are two conditions that must be fulfilled for efficient dereplication:

  1. One must be able to easily identify characteristic spectral ‘fingerprints’ of unknown compounds.
  2. One must have access to databases containing spectra of known structures.

NMR and MS spectra are typically used for dereplication. High resolution MS is the simplest and fastest to record, but it lacks the structural information that NMR provides. 1H NMR is a fast and straightforward technique that includes structural information. However, a 1H NMR spectrum is not a reliable fingerprint because of its limited resolution and the fact that measured spectra can be affected by factors like pH, concentration, and solvent effects. The 13C NMR spectrum of a compound, on the other hand, can be considered an effective fingerprint since it is virtually unaffected by the aforementioned conditions. It is also largely magnetic field independent, since there are no couplings that could cause variations in stronger or weaker fields. As a result, it is very easy to predict accurately.

To satisfy the second condition, one can consider using databases of real spectra or predicted spectra. Databases of real spectra usually contain a limited number of structures, and their spectra may not be ideal. On the other hand, there are several “open” databases with millions of chemical structures that could be used to predict 13C spectra, an example is PubChem.2 The benefits of using predicted spectra are that they are magnetic field independent, can be adjusted for solvents, and can be very accurate depending on the algorithms used.3

>> Download the full Application Note as PDF

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Ionic impurities in drug products – USP proposes new ion chromatography method
Ionic impurities in drug products – USP proposes new ion chromatography method

January 21, 2019

Chloride and sulfate are common impurities present in drug substances and drug products...

Decoding Dangerous Drinks with a Spectral Sensor
Decoding Dangerous Drinks with a Spectral Sensor

January 24, 2019

Have you ever heard that moonshine will make you go blind? Today, even your favorite, top-shelf liquor may be just as much of a risk...

Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture
Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture

January 24, 2019

While electric vehicles are becoming more mainstream the use of traditional gasoline engines will have a place in society for decades to come...

Cleaning Up IPA Production with Stage-by-Stage MIR Analysis
Cleaning Up IPA Production with Stage-by-Stage MIR Analysis

January 24, 2019

2-Propanol is one of the most common solvents in the world, with over 2 million tons produced in 2003 (Science)...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.