Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2019 / Adaption of Retention Models to Allow Optimization of Peptide and Protein Separations

Adaption of Retention Models to Allow Optimization of Peptide and Protein Separations

02/20/2019

Share

Featured Image

While the current percentage of biopharmaceutical drugs approved and used as human medicine is small compared with small molecule drugs, EvaluatePharma® finds that “the percentage of sales from biotechnology products (bioengineered vaccines & biologics), within the world's top 100, is set to increase from 39% in 2012 to 51% in 2018. In the broader market, sales from biotechnology products are expected to account for 25% of the world pharmaceutical market by 2018, versus the current share of 21% in 2012”.1 Growing interest in biopharmaceuticals has led to proteins and peptides becoming analytes of increasing importance in the analytical laboratory.

The most commonly used analytical technique for the analysis of protein and peptide purity is reversed phase chromatography (RPC) in combination with UV detection and/or mass spectrometry. As the molecular weight of the protein increases, the selectivity of the RPC separation decreases. Consequently it becomes necessary to introduce complementary separation techniques, e.g., ion exchange chromatography (IEC) for larger proteins.

Retention modelling has been successfully used for the method development and optimization of analytical scale separations of small molecules for 30 years2,3,4 and several commercial software packages are available, for example DryLab, ACD/LC Simulator, ChromSword, and Osiris.

A common method development strategy involves a screening of columns and mobile phases that are known to generate large differences in selectivity. The most promising combination of column and mobile phase is then selected and a limited number of experiments conducted in order to build retention models. Subsequently, these models are applied to find an optimal temperature and gradient shape in silico and to assess method robustness.

An important advantage with retention modelling based on theoretical rather than statistical models [i.e., polynomial models based on factorial designs often referred to as Design of Experiments (DoE)], is that a significantly smaller number of experiments are required to fit the models and, in addition, more advanced predictions can be made. For example, it is possible to predict the appearance of an entire chromatogram rather than simply a numerical value which describes the quality of the separation.

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Ionic impurities in drug products – USP proposes new ion chromatography method
Ionic impurities in drug products – USP proposes new ion chromatography method

January 21, 2019

Chloride and sulfate are common impurities present in drug substances and drug products...

Decoding Dangerous Drinks with a Spectral Sensor
Decoding Dangerous Drinks with a Spectral Sensor

January 24, 2019

Have you ever heard that moonshine will make you go blind? Today, even your favorite, top-shelf liquor may be just as much of a risk...

Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture
Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture

January 24, 2019

While electric vehicles are becoming more mainstream the use of traditional gasoline engines will have a place in society for decades to come...

Cleaning Up IPA Production with Stage-by-Stage MIR Analysis
Cleaning Up IPA Production with Stage-by-Stage MIR Analysis

January 24, 2019

2-Propanol is one of the most common solvents in the world, with over 2 million tons produced in 2003 (Science)...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.