Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2021 / Optimizing chemiluminescence and fluorescence imaging

Optimizing chemiluminescence and fluorescence imaging

03/24/2021

Share

Featured Image

The art of capturing biomolecular images is, at its heart, about harvesting photons. Collecting more photons from a sample results in sharper images and detection of faint protein bands which otherwise could have been missed. More photons also leads to a greater signal-to-noise (S/N) ratio and increased quantitation confidence.

The present generation of ECL reagents for chemiluminescence-based detection, such as ECL Prime, uses the enzymatic horseradish peroxidase (HRP) luminol reaction to deliver a stable, high signal. In fluorescence-based detection, CyDye fluorophores are the industry standard and now span across the entire visible range, with Amersham CyDye 700 and 800 near infrared (NIR)- labeled antibodies recently taking center stage.

Modern imagers have light sources, emission filters, and lenses designed to maximize detection of emitted sample photons. If more detected photons are better, when in the imaging process should we stop collecting photons and how can we decide the best exposure time? Image capture is usually allowed to continue to obtain maximum signal, with the limiting factor being saturation of bands of interest.

Grayscale images in .TIF format, composed exclusively of gray shades or levels, are used for quantitation in applications like Western blotting. In a 16-bit .TIF file generated by the imager, there are 65 535 gray levels. When surplus photons are collected, the maximum image pixel value remains at 65 535, regardless of the exposure time, and results in saturation. Yet, we might still want to collect more photons to see details in the images and detect weak bands. So, how can we overcome this challenge?

>> Download the Full Application Note as a PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Removing User Bias from Structure Verification by NMR
Removing User Bias from Structure Verification by NMR

November 15, 2021

Chemical structure verification by NMR is one of t...

Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS
Simultaneous Determination of Eight Nitrosamine Impurities in Metformin Extended-Release Tablets Using the Agilent 6470 Triple Quadrupole LC/MS

November 15, 2021

Detection of regulated genotoxic impurities from t...

HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®
HIGH RESOLUTION MULTI-REFLECTING TIME-OF-FLIGHT MASS ANALYZER WITH FOLDED FLIGHT PATH®

November 15, 2021

How high does resolving power need to be?

Biomarker discovery
Biomarker discovery

November 16, 2021

Essential guide to analysing VOCs in breath and other biological samples...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.