Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2017 / Reasons to upgrade from single to multi-detector GPC

Reasons to upgrade from single to multi-detector GPC

05/10/2017

Share

Featured Image

The top ten reasons to consider an advanced multi-detector GPC system, which incorporates light scattering detectors for the measurement of absolute molecular weight and molecular weight distribution with excellent accuracy.

Gel-permeation chromatography (GPC) is an essential tool for the characterization of polymers. It allows polymer scientists to tailor a polymer’s properties to its end use requirements by controlling its molecular properties, since the two are inextricably linked. For example, increasing a polymer’s molecular weight can increase its strength but there are many other effects that the molecular properties can have on the bulk ones. Table 1 gives an example of the connections although the real links will be specific to each polymer under study.
Table 1: Effect of molecular weight, polydispersity and structure on the bulk properties of a polymer
Multi-detector GPC is a development over and above single detector systems, which are often called “conventional GPC”. A single-detector system typically includes a refractive index (RI) detector and is used to make measurements of molecular weight by comparing a sample’s elution time against that of standards with known molecular weight. Single-detector conventional systems have been available since the development of this separation technique and are used throughout industry and academia. They are used for a wide range of applications, such as synthetic polymer development, manufacture and QC, polysaccharide preparation, grading, and blending. There are a number of reasons why they are so popular including, most importantly, their repeatability and reproducibility, their robustness, and their simplicity and accessibility. However, if the standards and samples are different molecules, the results can only ever be comparative. The technology has advanced, however, and with additional detectors comes a wealth of information. Light scattering detectors, whether SEC-MALS, RALS, or LALS (multi-angle, right-angle or low-angle light scattering), measure absolute molecular weight and molecular weight distribution with excellent accuracy. A viscometer allows measurement of molecular structure and branching, and multiple concentration detectors allow compositional analysis of copolymers. The combination of these detectors allows for complete characterization of polymers without the compromises of relative measurements or chromatography setup dependencies. Developing novel polymers and achieving their maximum potential can only be achieved when the polymer is fully characterized. With these benefits in mind, this white paper lists the top ten reasons you need an advanced multi-detector GPC system.
>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Solvents & Inorganics for accurate, brilliant results
Solvents & Inorganics for accurate, brilliant results

January 9, 2017

Now that the life science business of Merck KGaA, ...

Discovery of Sulfur-Containing Compounds in Broccoli with GC-TOFMS
Discovery of Sulfur-Containing Compounds in Broccoli with GC-TOFMS

January 16, 2017

Analyzing samples of a raw broccoli and a broccoli that was processed to be sold frozen we show the sample-distinguishing differences that occur during food processing...

Aquastar® reagents for brilliant Karl Fischer titration results
Aquastar® reagents for brilliant Karl Fischer titration results

January 23, 2017

Determining the water content of gases, liquids and solids can be achieved with a high degree of accuracy using Karl Fischer titration together with our Aquastar® reagents and standards from Merck...

REACH Polymer Status determined with GPC/SEC
REACH Polymer Status determined with GPC/SEC

January 27, 2017

Polymers are “special substances” in terms of REACH...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.