Subscribe to Newsletter

Rising above the Helium Shortage

Worldwide helium demand far exceeds current production levels. For many gas chromatography applications, the switch to hydrogen is painless. What’s stopping you?

Introduction

Since the 1950s, helium’s inert nature has made it the go-to carrier gas for the majority of gas chromatography (GC) applications. Despite GC’s relatively low consumption of helium – estimated at less than two percent of the worldwide total (1) – laboratories now struggle to find a guaranteed supply and face stark price rises caused by worldwide refinery equipment failure and shutdowns (2), with scheduled maintenance of natural gas refineries causing further disruptions.

The impact is compounded by increasing demand for helium from newly industrialized nations, such as China. Helium, nitrogen, hydrogen, argon, and air can all be used as GC carrier gases – selection is mainly determined by the type of detector used. In some cases, helium can be substituted by hydrogen or nitrogen, both of which are readily available and relatively cheap. So why have they not been widely used as alternatives to helium until now? The short answer is that, in the past, there was no market pressure forcing chromatographers to adapt. That has all changed. Now, GC manufacturers have started addressing the helium shortage in earnest. Bruker has released its Scion GC-MS systems specifically designed for use with hydrogen; Thermo has tested all of its GC products for hydrogen compatibility and has been highly pro-active in addressing the conversion of its GC systems to hydrogen through webinars and seminars, even producing a toolkit to assist customers in method conversion; and Agilent, with the largest GC market share, has hosted webinars, produced a carrier gas flow calculator app, and developed gas saving solutions to reduce helium consumption for applications that can’t use an alternative carrier gas source.

Anyone considering a move away from helium will have encountered the van Deemter curve, which shows the relative carrier efficiencies of nitrogen, hydrogen and helium. What this curve tells us is that nitrogen can perform better than helium and hydrogen, but only at very low velocities. Helium and hydrogen perform similarly at medium carrier gas velocities, with hydrogen actually outperforming once things really speed up. The performance of hydrogen at higher carrier velocities provides clear advantages to those labs looking to increase sample throughput without compromising on sample quality (3).

Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE!

Login
Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register