Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2014 / The Characterization of Sugar Beet Pectin

The Characterization of Sugar Beet Pectin

06/19/2014

Share

Featured Image
Abstract

The need to increase the use of low valued co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. The characterization of sugar beet pectin is essential as it has the potential to be used in the production of industrial products, e.g., as an emulsifying agent in food systems. This added use of sugar beet pectin should be of help to sugar beet growers and processors by increasing the demand and value of their by-product without increasing the cost of sugar to the consumer. Here we discuss the characterization of sugar beet pectin utilizing the EcoSEC GPC System with an internal dual-flow differential refractive index detector and UV detector coupled to multi-angle light scattering, quasi-elastic light scattering, and differential viscometry. Implementing this multi-detector SEC technique allowed for the determination of the molar mass averages, in a calibrant-independent fashion, as well as several sizing parameters.

tosoh logo for app notes
Introduction
An estimated 2 million tons of dry sugar beet pulp is generated annually by U.S. industries as a result of the extraction of sugar from sugar beets1. Currently sugar beet pulp is mainly dried and sold as low-value animal feed at little profit because of the costly energy required to dry it for storage and shipment. Sugar beet pulp, especially the high molar mass pectin portion, has the potential to be an enormous untapped source of a valuable polysaccharide for U.S. industry. The need to increase the utilization of low-value co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. Sugar beet pulp on a dry weight basis is composed of about 67% plant cell wall polysaccharides, 19% of which are pectin, 21% pectin-associated arabinan, and 24% cellulose1, all of which can potentially add value to the pulp if isolated and characterized. The pectin in sugar beets has different chemical features than that from other sources of pectin, i.e. citrus, as the former tends to have a higher degree of acetylation, a higher natural sugar content, and contains feruloyl groups. Furthermore, unlike citrus pectin which is currently used as a gelling and thickening agent, sugar beet pectin (SBP) has very poor gelling properties, thus the isolation and characterization of it could result in new applications, especially in the production of industrial products. Thus far, SBP has demonstrated the potential to be used as an emulsifying agent in food systems, as it has been found to reduce the interfacial tension between oil and water phases1. The capability of SBP to reduce surface tension has been attributed to the presence of acetyl groups and hydrophobic proteins in SBP preparations2.In order to better understand the ability of SBP to act as an emulsifier, we have investigated the structure of SBP using size exclusion chromatography coupled to a multiplicity of physical detection methods, namely multi-angle light scattering (MALS),  quasi-elastic light scattering (QELS), multi-wavelength UV, differential refractometry (RI), and differential viscometry (VISC), and corroborated these results with results from atomic force microscopy1.
Experimental Conditions
Sugar beet pectin was prepared using microwave-assisted flash-extraction as described in reference 1. Size exclusion chromatography analysis of the sugar beet pectin was performed on a system consisting of an EcoSEC GPC System (Tosoh Bioscience) with an internal dual-flow differential refractive index detector and UV detector connected in series to a HELEOS II MALS photometer (Wyatt Technology Corp.), a QELS photometer (Wyatt), and a ViscoStar differential viscometer (Wyatt). The UV absorbance was monitored at wavelenghts of 310, 278, and 250 nm. The solvent and mobile phases were water with 0.05 M NaNO3 and 0.01% NaN3, at a flow rate of 0.7 mL/min. 200 μL injections of 1 mg/mL solutions were injected onto a column bank consisting of three TSKgel GMPWXL columns (30 cm x 7.8 mm) with a particle size of 13 μm obtained from Tosoh Bioscience. These mixed-bed columns have a separation range, based on polyethylene oxides, of 1000 to 8 x 106 g/mol. Detectors, pump oven, and column oven were maintained at 35°C. Data acquisition and processing were performed using Wyatt’s ASTRA 5.3.4.16 software. The HELEOS II detector was normalized in-house using a pullulan standard, with a molar mass of 47,300 g/mol, while calculation of interdetector delays and interdetector band broadening correction were performed using BSA. Calibration of the MALS unit was performed using toluene. The ∂n/∂c of sugar beet pectin was determined previously to be 0.130 mL/g.
Results and Discussions
As described above, the EcoSEC GPC System equipped with TSKgel SEC columns was coupled to a train of MALS, QELS, UV, RI, and VISC detectors to determine the molar mass and size of sugar beet pectin. The results of the experiments are given in Table 1.
app note 069-14 Tosoh table 1Table 1. Physical Properties of Sugar Beet Pectin
>> Download the full Application Note as PDF

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Comprehensive Analysis of Drug Residues from a Confiscated Pipe
Comprehensive Analysis of Drug Residues from a Confiscated Pipe

May 1, 2014

This application note shows the utility of high resolution mass spectrometry with soft ionization to facilitate identification of unknown compounds which were present in extracted residues from a confiscated pipe...

Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms
Extraction and Analysis of Neonicotinoid Pesticides from Flower Blossoms

May 6, 2014

In this application, the Quick, Easy, Cheap, Effective, Rugged, Safe (QuEChERS) approach was used to develop an extraction and cleanup method for the analysis of seven neonicotinoid pesticides in flower blossoms...

Ultrapure water: LC-MS suitability tests
Ultrapure water: LC-MS suitability tests

May 7, 2014

Fresh ultrapure water used in all the experiments was produced from a Milli-Q® water purification system fed by an Elix system...

GC/MS analysis of a complex sample in DCM using hydrogen carrier gas
GC/MS analysis of a complex sample in DCM using hydrogen carrier gas

May 8, 2014

This application note aims to demonstrate the injection of a complex, 76-component sample diluted in Dichloromethane (DCM) using hydrogen carrier gas...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.