Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.

Using the Power Law Model to Quantify Shear Thinning Behavior on a Rotational Rheometer

Quantifying shear thickening behavior using the power law model on a rotational rheometer

Abstract

A material’s rheological properties not only influences its visual and textural perception, but also affects its processing capabilities. For instance, compared to Newtonian materials, shear-thinning materials are more susceptible to applied stress.

Introduction

While most suspensions and polymer structured materials are shear thinning, some materials can also show shear thickening behavior where viscosity increases with increasing shear rate or shear stress. This phenomenon is also often referred to as dilatancy, and although this refers to a specific mechanism for shear thickening the terms are often used interchangeably. In most cases, shear thickening occurs over a decade of shear rates and there can be a region of shear thinning at lower and higher shear rates.

Usually dispersions or particulate suspensions with high concentration of solid particles, pastes, associative polymers such as HASE, HEUR polymers etc. exhibit shear thickening. Materials exhibiting shear thickening are much less common in industrial applications than materials exhibiting shear thinning, however, where encountered shear thickening materials can lead to severe processing problems. Materials which undergo micro-structural or orientation changes on application of shear, that lead to increased resistance to flow, will tend to show shear thickening.

For suspensions this generally occurs in materials that show shear thinning at lower shear rates and shear stresses. At a critical shear stress or shear rate the organized flow regime responsible for shear thinning, is disrupted and so called ‘hydro-cluster’ formation or ‘jamming’ can occur. This gives a transient solidlike response and an increase in the observed viscosity. Shear thickening can also occur in polymers, in particular amphiphilic polymers, which at high shear rates may open-up and stretch, exposing parts of the chain capable of forming transient intermolecular associations.

Enjoy our FREE content!

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE and always will be!

Login if you already created an account

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine
Register

Or Login as a Guest or via Social Media

Related Application Notes

Determination of Phenolic compounds in Whisky using SBSE-GC/MS and LVI-GC/MS

| Contributed by Gerstel

Comprehensive guide to 2D Gas Chromatography (GCxGC)

| Contributed by SepSolve Analytical

Reaction monitoring of Antibody-Drug-Conjugates (ADCs) Using YMC´s BioPro HIC BF

| Contributed by YMC

Newsletter

Send me the latest from The Analytical Scientist.

Sign up now

Related Articles

Fields & Applications

Unity on Units

| Charlotte Barker

Business & Education

In Your View

| Charlotte Barker, | Joanna Cummings, | Frank van Geel, | Rich Whitworth

Techniques & Tools

Strokes of Genius

Register here

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register