Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / App Notes / 2019 / Why is pH so important in buffers and additives in reversed-phase HPLC or LC-MS?

Why is pH so important in buffers and additives in reversed-phase HPLC or LC-MS?

11/20/2019

Share

Featured Image

When an acid is more than 2 pH units above or below its pKa, it will be >99% ionised or non ionised, respectively. Bases are ionised below their pKa and non ionised above. The non ionised form will be less polar (more hydrophobic), and so more strongly retained in a reversed-phase system. As a result, at low pH, acids will be more retained, whereas bases will be more retained at high pH.

If the mobile phase pH is near pKa, you can see that slight changes in pH can make substantial changes in retention – not what is desired for a robust separation. Some compounds are very sensitive to very small changes in pH. Here the resolution changes by a factor of two for a change of only 0,1 pH units – this is the amount of error in pH adjustment common to many laboratories. Besides the instability of retention times when the pH is near pKa, relative peak spacing (selectivity) can change if compounds of similar structure are present.

Another factor that should be considered when choosing the mobile phase pH is the stability of the column. As a rule, silica-based columns should be operated at 2

Since the retention of ionisable compounds are very sensitive to the mobile phase pH, it is necessary to control the pH of the mobile phase by the addition of a buffer. A buffer maintains the pH when a small amount of acid or base is added.

Many different substances have been used for buffering in HPLC.

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Ionic impurities in drug products – USP proposes new ion chromatography method
Ionic impurities in drug products – USP proposes new ion chromatography method

January 21, 2019

Chloride and sulfate are common impurities present in drug substances and drug products...

Decoding Dangerous Drinks with a Spectral Sensor
Decoding Dangerous Drinks with a Spectral Sensor

January 24, 2019

Have you ever heard that moonshine will make you go blind? Today, even your favorite, top-shelf liquor may be just as much of a risk...

Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture
Volume Fraction Determination of Ethanol in Splash-Blended Fuel Mixture

January 24, 2019

While electric vehicles are becoming more mainstream the use of traditional gasoline engines will have a place in society for decades to come...

Cleaning Up IPA Production with Stage-by-Stage MIR Analysis
Cleaning Up IPA Production with Stage-by-Stage MIR Analysis

January 24, 2019

2-Propanol is one of the most common solvents in the world, with over 2 million tons produced in 2003 (Science)...

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.