Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2020 / May / Faster, More Objective Maggot Analysis
Forensics Mass Spectrometry

Faster, More Objective Maggot Analysis

Maggot analysis presents unique challenges – but a combination of molecular science and artificial intelligence is helping forensic researchers ID similar species

By Michael Schubert 05/07/2020 1 min read

Share

Although academically interesting to some, it’s difficult to see the relevance of maggots to the average analytical scientist. For those who work in forensics, though, the link is clear – maggots on a cadaver can help investigators determine when and where death occurred. In some cases, such as neglect, they can even help establish a person’s physical condition prior to death.

The drawback? Maggot analysis is time-consuming, resource-intensive, and requires the input of expert entomologists who can distinguish between different species. In many cases, this requires raising living maggots to their mature fly form to make species distinction easier. But not all cadavers yield live maggots – and, even in those that do, identification can be subjective and different species may resemble one another too closely for reliable classification.

Is there a better way? That’s the question researchers from the State University of New York and John Jay College of Criminal Justice sought to answer. By suspending combinations of maggots in ethanol and using direct analysis with real-time high-resolution MS (DART-HRMS), they were able to identify multiple species of maggot in combination, each with its own highly reproducible chemical signature (1).

Next, the investigators applied machine learning in the form of an aggregated hierarchical conformal predictor – a technique used to classify objects. After training on a hierarchical classification tree, the conformal predictor was able to identify individual species in mixtures of up to six different maggot species, with confidence limits between 80 and 99 percent.

The new method combines analytical science and artificial intelligence to both speed up and increase the objectivity of maggot analysis – and thus, hopefully, extract information from cadavers that could lead to more solved cases and fewer flies in the investigative ointment.

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. S Beyramysoltan et al., Anal Chem, [Epub ahead of print] (2020). PMID: 32091197.

About the Author(s)

Michael Schubert

While obtaining degrees in biology from the University of Alberta and biochemistry from Penn State College of Medicine, I worked as a freelance science and medical writer. I was able to hone my skills in research, presentation and scientific writing by assembling grants and journal articles, speaking at international conferences, and consulting on topics ranging from medical education to comic book science.

More Articles by Michael Schubert

False

Advertisement

Recommended

False

Related Content

How Dinosaurs Ate Their Way to Dominance
Forensics
How Dinosaurs Ate Their Way to Dominance

December 10, 2024

2 min read

Analyses of fossilized feces, intestinal contents, and vomit reveal how dinosaurs adapted to climate shifts

New Window into Ancient Microfossils
Forensics
New Window into Ancient Microfossils

October 4, 2024

1 min read

A new imaging technique using specially coated indium tin oxide (ITO) glass slides reveals key bioessential elements in ancient microfossils – suggesting that life 1...

New Window Into Ancient Microfossils: Part Two
Forensics
New Window Into Ancient Microfossils: Part Two

October 11, 2024

8 min read

Why the discovery of indium tin oxide glass slides ultimately led Akizumi Ishida and Kohei Sasaki to shed new light on early life on Earth – and to jump for joy

Mystery Solved: These Iron Age Infants Died of Natural Causes
Forensics
Mystery Solved: These Iron Age Infants Died of Natural Causes

October 17, 2024

5 min read

Ani Martirosyan walks us through her histological and synchrotron X-ray analysis that provides new insights into infant mortality in Iron Age Iberian populations

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.