Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology
Our flow cytometry laboratory performs diagnostic and monitoring analyses as well as translational research and academic collaborations. On the diagnostic and monitoring side, we analyze peripheral blood and bone marrow, solid tumor, and spinal fluid samples. We assess children with suspected hematologic malignancies for leukemia-associated phenotype (LAP) markers. We can then monitor their progress through treatment, track their minimal residual disease, and conduct follow-up testing for potential relapse. We also monitor chimeric antigen receptor T cell (CAR-T) therapy patients for treatment response and potential relapse of disease. CAR-T cells target a specific epitope, typically CD19 or CD22 in B cell leukemias or alternative epitopes in solid tumors. But following a period of successful response to therapy, there is always the potential for relapse – and the relapsed disease can then evolve to stop expressing its target epitope. This loss of expression affects the way we have to analyze the resulting disease; gating strategies have to change, which involves using different, potentially non-lineage-specific markers. We can do this down to two cells in a million where phenotypic aberrances are pronounced. Detecting returning disease at such low levels allows for changes in disease management and therapy with greater effect than waiting for relapse to become clinically frank.
In addition, we run biomarker tests for diseases such as neuroblastoma. It’s a cancer, prevalent in pediatrics but nonexistent in adults – and it has a very poor prognosis. We want to work out how to detect it at low level, or when it has infiltrated into the bone marrow (as this alters the disease staging and treatment). We also monitor the efficacy of CAR-T therapies that might improve outcomes for neuroblastoma patients.
In Service to Our Smallest Patients
Enzymology: A Whistle-Stop Tour of GOSH Pathology
Microbiology: A Whistle-Stop Tour of GOSH Pathology
Histopathology: A Whistle-Stop Tour of GOSH Pathology
Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology
Rapid response: A Whistle-Stop Tour of GOSH Pathology