Subscribe to Newsletter
Fields & Applications Pharma & Biopharma

Lab-on-a-Sheep

image of Sue Lunte

We have to start with that title. Do you mean it?

It started years ago at a talk by Jim Jorgenson on coupling liquid chromatography and capillary electrophoresis: I remember thinking, “Maybe we could use the same approach to couple microdialysis and capillary electrophoresis”. Ten years later, things had been miniaturized and we took advantage by putting it on a freely-roaming animal. We can probe blood or the brain; our current project monitors neurotransmitters in the brain of sheep. Our goal is to simultaneously monitor neurotransmitters and behaviour, the latter using time-stamped video. So you can look for spikes in dopamine and relate it to the animal’s behaviour.

It sounds like a project that will attract attention

We’ve had a lot of interest from people who study behaviour, but we’ve also had discussions about using the approach in hospital intensive care units to monitor people with traumatic brain injury – it has potential to be developed as a portable device to assess changes in neurotransmitter concentration. That summarizes what’s really great about analytical chemistry: when you come up with something there’s usually more than one application for it.

I am in charge of the Ralph (Buzz) Adams Institute. He went from fundamental electrochemistry to developing analytical instrumentation to look at neurotransmitters in the brain. He had a sign in his lab that said “Each scientist owes it to himself and to society to address the largest question for which the tools are ready and he is the right guy.” We’ve put that in a prominent position in the Center because it’s really important that researchers think about the impact of their work on the world.

Is that why Analytical Methods, for which you are Editor-in-Chief, requires authors to include a statement on societal impact when submitting a manuscript?

That was the decision of the editorial board. We wanted to differentiate ourselves from other analytical journals, and saw solving real-world problems as the way to go. Other journals can have the first demonstration of new techniques (often under very controlled circumstances); we are interested in the application of rugged techniques to real problems. It gives us a particular flavor. Actually, we don’t publish the societal impact statements, but it might be a good idea.

Your career has been at the interface between chemistry and biology. Which are you?

I am a chemist. I was a chemistry major and, while I work at the interface, I see things from a chemist’s point of view. The difference is in the attitude to quantitation: Chemists have a need to get at absolute quantities of things while biologists are trying to solve puzzles at the level of a system and are only interested in quantitation to the extent that it helps elucidate their system. Does it light up or not, that’s what they want to know. The problems in biology are really interesting to me and it can be a lot easier to see the fruits of your labor as the work is often directly applicable to problems of health and disease.

When did your interest in science begin?

It feels that I’ve always liked it. I had good teachers; even at elementary school I attended nature club. I grew up in Detroit and my parents, who are not scientists, enrolled me in science courses at the Cranbrook Institute. At high school, chemistry was my favorite subject. What fascinated me was that it was so quantitative: if you took so much of one chemical and so much of another you could predict how much of a product chemical would be produced.

How would you assess the position of women in analytical science?

Things have changed over the years. When I was a grad student, only five or six of the sixty graduate students were women; today, our classes are more than 50 percent women. In the generation before me, a lot of the female professors of chemistry were single their entire life, they had to be married to the job. Now, you see a lot of dual-career couples, both faculty members. Things have gotten better but the fact that your Power List only had eight women shows that there is some way to go. Hopefully ten years from now, that will have gone up to 30.

Can you tell us about your Center of Biomedical Research Excellence?

COBRE grants are given by NIH to improve infrastructure and to mentor young faculty in states that receive lower levels of funding. Our center integrates analytical chemistry, engineering, molecular biosciences, and genomics through three core labs: microfabrication/microfluidics; molecular probes and model organisms; and next-gen sequencing. We have eight funded researchers who we are mentoring to apply for RO1 grants.

What are the advantages and disadvantages of being in a smaller academic institute?

It is different. We have a very collaborative environment that encourages interactions between scientists from different disciplines. Almost all my NIH grants are multi-investigator, including a biology expert, an instrumentation expert, and so on. The campus is not huge so it’s easy for people to get together and work together. Egos don’t get in the way too much here.

Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

About the Author
Richard Gallagher

Richard Gallagher is no stranger to quality, style or credibility. With Science, Nature and The Scientist all under his editorial belt, Richard teamed up with two good friends to form Texere Publishing, a new company with a great deal of know-how. Richard's also no stranger to contention: "You've constantly got to have an eye out for an editorial subject that will really stir the pot. We're aiming to be always relevant, but never predictable. About The Analytical Scientist, he says, Our vision is to capture commitment and success in analytical science in very particular way: by telling stories. Getting it right is an enormous, exciting challenge. Like so many professionals in the analytical sciences, we'll be thinking it, dreaming it and living it every day.

Related Application Notes
Charge heterogeneity analysis of an acidic protein and identification of its proteoforms using a streamlined icIEF-UV/MS workflow

| Contributed by SCIEX

Site-specific differentiation of hydroxyproline isomers using electron activated dissociation (EAD)

| Contributed by SCIEX

Charge variant analysis of antibody-drug conjugates using an icIEF-UV/MS workflow

| Contributed by SCIEX

Related Product Profiles
Higher Peaks – Clearly.

| Contributed by Shimadzu Europa

Compact with countless benefits

| Contributed by Shimadzu Europa

The fine Art of Method Development

| Contributed by Shimadzu Europa

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register