Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2020 / Jul / Pandemic Proteomics
Omics Proteomics Mass Spectrometry

Pandemic Proteomics

MS-based proteomics is providing clues about the huge range of responses patients exhibit

By Matt Hallam 07/06/2020 1 min read

Share

One of the major challenges we face in the fight against COVID-19 is a lack of knowledge surrounding host responses. Some are asymptomatic; others die – but what biological mechanisms underscore this chasmic disconnect?

Christoph Messner and colleagues are unraveling the mystery (1). Having spent the last few years developing an MS-based, high-throughput proteomics platform at the Francis Crick Institute, the team can quantify over 200 proteins per sample in less than 10 minutes. “It was obvious that our proteomics platform could be used as a powerful tool to study the plasma proteins of patients infected with SARS-CoV-2,” Messner says. “We set out to assess protein-level host responses with the hope of identifying markers for disease severity.”

And that’s just what they did. Samples from the first COVID-19 patients hospitalized at the Charité University Hospital in Berlin were subjected to MS-based proteomics by applying Sequential Window Acquisition of All Theoretical Mass Spectra. Interestingly, the platform uses a standard-flow ultra-high-performance LC system, rather than the usual nano-LC, to reduce run-to-run time and increase robustness. Coupled with semi-automated sample preparation, which allows the preparation of four 96-well plates in parallel, the team can analyze hundreds of samples per day.

“We found 27 biomarkers that classify mild and severe forms of COVID-19, some of which may represent therapeutic targets,” Messner says. “These proteins highlight roles for complement factors, the coagulation system, and inflammatory mediators (including proinflammatory signaling molecules up- and downstream of interleukin-6) in the SARS-CoV-2 host response.” The hope now is that these markers could be targeted in routine tests, allowing doctors to earmark patients at increased risk of critical illness.

The researchers are currently advancing their work in larger, longitudinal patient cohorts to refine the identified biomarkers and build models to predict COVID-19 progression. At the same time, they are developing multiple reaction monitoring assays to guide treatment decisions in hospitals.

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. CB Messner et al., Cell Syst [ePub ahead of print] (2020). DOI: 10.1016/j.cels.2020.05.012 

About the Author(s)

Matt Hallam

I've always wanted a job that fosters creativity - even when I worked on the assembly line in a fish factory. Outside work, I satisfy this need by writing questionable fiction. The venture into science writing was an unexpected departure from this fiction, but I'm truly grateful for the opportunity to combine my creative side with my scientific mind as Editor of The Analytical Scientist.

More Articles by Matt Hallam

False

Advertisement

Recommended

False

Related Content

The Analytical Scientist Innovation Awards 2024: #7
Omics
The Analytical Scientist Innovation Awards 2024: #7

December 2, 2024

4 min read

Frank Steemers, co-founder and CSO of Scale Biosciences, tells us the story of ScalePlex – the 7th ranked innovation on this year’s Awards

The Analytical Scientist Innovation Awards 2024: #4
Omics
The Analytical Scientist Innovation Awards 2024: #4

December 5, 2024

6 min read

Thermo Fisher Scientific’s high-sensitivity mass spec for translational omics research – the Stellar MS – is ranked 4th in our annual Innovation Awards

Let Me See That Brain
Omics
Let Me See That Brain

December 9, 2024

1 min read

TRISCO sets a new standard for 3D RNA imaging, delivering high-resolution and uniform images to offer insights into brain function and anatomy

The Analytical Scientist Innovation Awards 2024
Omics
The Analytical Scientist Innovation Awards 2024

December 11, 2024

10 min read

Meet the products – and the experts – defining analytical innovation in 2024

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.