Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2016 / Nov / Sizing Dairy Emulsions for Optimal Performance
Sensors Sensors News and Research Technology Data and AI Food, Beverage & Agriculture Materials Science Business & Entrepreneurship Sponsored

Sizing Dairy Emulsions for Optimal Performance

11/22/2016 1 min read

Sponsored By

Share

Establishing an optimal size for fat droplets in dairy emulsions such as milk, ice-cream and cream liqueurs is essential for commercial success. Emulsification to a smaller droplet size tends to improve product quality but increases manufacturing costs. In this article, Dr Sarennah Longworth-Cook, Product Technical Specialist at Malvern Instruments, looks at particle sizing techniques that can be helpful, focusing on the application of laser diffraction.

Key Points:

  • The particle size of fat droplets in dairy emulsions such as milk, ice cream and cream liqueurs directly impacts their performance, perceived quality and commercial viability.
  • Targeting a relative fine particle size distribution often helps to improve product characteristics but increases energy consumption during the emulsification process. Identifying an optimal particle size supports the cost-effective manufacture of high quality products.
  • Laser diffraction and dynamic light scattering are both fast and efficient techniques for sizing dairy emulsions with laser diffraction offering the more optimal measurement range for many products.

 Download the full Application Note as PDF

Malvern provides the materials and biophysical characterization technology and expertise that enables scientists and engineers to investigate, understand and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries. Used at all stages of research, development and manufacturing, Malvern’s instruments provide critical information that helps accelerate research and product development, enhance and maintain product quality and optimize process efficiency. Our products reflect Malvern’s drive to exploit the latest technological innovations. They are used by both industry and academia, in sectors ranging from pharmaceuticals and biopharmaceuticals to bulk chemicals, cement, plastics and polymers, energy and the environment. Malvern systems are used to measure particle size, particle shape, zeta potential, protein charge, molecular weight, mass, size and conformation, rheological properties and for chemical identification, advancing the understanding of dispersed systems across many different industries and applications. www.malvern.com Material relationships http://www.malvern.com/en/ [email protected]

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.