Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2018 / Aug / Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology
Clinical

Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology

08/15/2018 1 min read

Share

Our flow cytometry laboratory performs diagnostic and monitoring analyses as well as translational research and academic collaborations. On the diagnostic and monitoring side, we analyze peripheral blood and bone marrow, solid tumor, and spinal fluid samples. We assess children with suspected hematologic malignancies for leukemia-associated phenotype (LAP) markers. We can then monitor their progress through treatment, track their minimal residual disease, and conduct follow-up testing for potential relapse. We also monitor chimeric antigen receptor T cell (CAR-T) therapy patients for treatment response and potential relapse of disease. CAR-T cells target a specific epitope, typically CD19 or CD22 in B cell leukemias or alternative epitopes in solid tumors. But following a period of successful response to therapy, there is always the potential for relapse – and the relapsed disease can then evolve to stop expressing its target epitope. This loss of expression affects the way we have to analyze the resulting disease; gating strategies have to change, which involves using different, potentially non-lineage-specific markers. We can do this down to two cells in a million where phenotypic aberrances are pronounced. Detecting returning disease at such low levels allows for changes in disease management and therapy with greater effect than waiting for relapse to become clinically frank.

In addition, we run biomarker tests for diseases such as neuroblastoma. It’s a cancer, prevalent in pediatrics but nonexistent in adults – and it has a very poor prognosis. We want to work out how to detect it at low level, or when it has infiltrated into the bone marrow (as this alters the disease staging and treatment). We also monitor the efficacy of CAR-T therapies that might improve outcomes for neuroblastoma patients.

In Service to Our Smallest Patients

Enzymology: A Whistle-Stop Tour of GOSH Pathology

Microbiology: A Whistle-Stop Tour of GOSH Pathology

Histopathology: A Whistle-Stop Tour of GOSH Pathology

Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology

Rapid response: A Whistle-Stop Tour of GOSH Pathology

In Service to Our Smallest Patients Enzymology: A Whistle-Stop Tour of GOSH Pathology Microbiology: A Whistle-Stop Tour of GOSH Pathology Histopathology: A Whistle-Stop Tour of GOSH Pathology Flow Cytometry: A Whistle-Stop Tour of GOSH Pathology Rapid response: A Whistle-Stop Tour of GOSH Pathology

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.