Assessing the effect of formulation composition on spidroin charge and stability
This application note describes the use of a Zetasizer Nano ZSP to characterize the charge state of spidroins in different formulations. The earliest stages of spidroin aggregation in different formulations are then assessed using low-temperature synamic light scattering (DLS) thermal trend experiments.
sponsored by Malvern Panalytical
Introduction
Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. The mechanical strength and elasticity of spider silk fibers have led to their successful use in the regeneration of peripheral nerves in rats [1]. Recombinant spider silk proteins have also shown potential for use in drug delivery systems [2]. Despite the wide range of medical applications that spider silk proteins offer, the production of these proteins on an industrial scale has only become possible fairly recently.
The evolution of spidroins has been influenced strongly by a requirement for high tensile strength, a quality that does not necessarily guarantee conformational or chemical stability when other stresses are applied. This application note describes the use of a Zetasizer Nano ZSP to characterize the charge state of spidroins in different formulations. The earliest stages of spidroin aggregation in different formulations are then assessed using low-temperature synamic light scattering (DLS) thermal trend experiments.
- Allmeling, C., Jokuszies, A., Reimers, K., Kall, S., Choi, C. Y., Brandes, G., Kasper, C., Scheper, T., Guggenheim, M. & Vogt, P. M. (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Proliferation, 41, 408-420
- Hofer, M., Winter, G. & Myschik, J. (2012) Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials. 33, 1554-1562