Subscribe to Newsletter
Techniques & Tools Mass Spectrometry

The Usual Suspect

Of the five largest extinction events recognized by geologists, the Late Ordovician Mass Extinction (LOME) has long been viewed as the odd one out. Although the others are clearly associated with global warming, scientists believed that the LOME may have been caused by a period of cooling and glaciation – a point used to challenge the theory that modern global warming is a driver of extinction.

Like many other researchers in the field, David Bond and Stephen Grasby took issue with the accepted explanation. “We thought it was strange to have this one extinction that appeared to be caused by such a different driver,” says Grasby, a researcher at the Geological Survey of Canada. So they set out to find evidence to support – or disprove – the theory.
 

David Bond at the Dobb's Linn section in Scotland. Photo credit: Stephen Grasby.

In every other mass extinction, huge volcanic eruptions – known as large igneous province (LIP) events – have released massive amounts of carbon dioxide, methane, and toxic metals into the atmosphere, causing warming effects unlike anything else in recorded history. To test the idea that the LOME was caused by cooling, the pair used MS and atomic absorption spectroscopy to analyze rock samples from the Dob’s Linn section in Scotland. These rocks represent sediment accumulation in the ocean before, during, and after the extinction.
 

Rock samples taken at Dobb's Linn in Scotland. Photo credit: Stephen Grasby.

Their results show a clear spike in mercury levels at this time – a fingerprint of an LIP event. “The data suggests the LOME was associated with volcanic activity, which would have triggered global warming and led to an anoxic ocean that suffocated marine life,” says Bond, Director of Research at the University of Hull, UK. “This discovery is extremely important. It proves that, since complex life evolved on Earth, all mass extinctions can be tied to global warming.”

Though confident in their results, the pair emphasize the importance of re-evaluating previous data to confirm their findings. “There are a number of other good exposures of this time boundary that would provide interesting samples,” says Grasby. “We also have plans for detailed radio-isotopic dating of the Ordovician-Silurian boundary, which would allow us to precisely determine the sequence of events and work out how quickly these extinctions occurred,” adds Bond.
 

Receive content, products, events as well as relevant industry updates from The Analytical Scientist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

  1. D Bond, S Grasby, Geology (2020). DOI: 10.1130/G47377.1
About the Author
Lauren Robertson

By the time I finished my degree in Microbiology I had come to one conclusion – I did not want to work in a lab. Instead, I decided to move to the south of Spain to teach English. After two brilliant years, I realized that I missed science, and what I really enjoyed was communicating scientific ideas – whether that be to four-year-olds or mature professionals. On returning to England I landed a role in science writing and found it combined my passions perfectly. Now at Texere, I get to hone these skills every day by writing about the latest research in an exciting, creative way.

Related Application Notes
Charge heterogeneity analysis of an acidic protein and identification of its proteoforms using a streamlined icIEF-UV/MS workflow

| Contributed by SCIEX

Site-specific differentiation of hydroxyproline isomers using electron activated dissociation (EAD)

| Contributed by SCIEX

High-Resolution Accurate Mass Library for Forensic Toxicology

| Contributed by Shimadzu

Related Product Profiles
ASMS 2024: Innovations Unveiled

Higher Peaks – Clearly.

| Contributed by Shimadzu Europa

Compact with countless benefits

| Contributed by Shimadzu Europa

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register