Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Fields & Applications Materials, Liquid Chromatography, Mass Spectrometry

True Colors

Preserving our cultural heritage has great societal impact. Millions visit museums and historical collections every year and derive enjoyment, inspiration and education from the objects they see there. My role is to help provide the context that makes these cultural artifacts so fascinating, and preserve them for future generations. I work both at the faculty of humanities, where we teach conservators, and at the faculty of science, within the analytical chemistry group. This ensures the integration of art and science, which is key in the preservation of cultural heritage.

Right now, I have two main lines of research, closely interconnected. One is the investigation of organic colorants used in textiles, furniture, paintings and drawings. I have studied objects from 3,500-year-old archaeological textiles to 20th century art. By understanding which organic colorants were used in an object and how they have changed over time, including degradation mechanisms, we can develop preservation strategies and even reconstruct the original appearance of the object.

Tools of the trade

Analytical science forms the basis of all chemical research carried out in the field of cultural heritage, and developing better analytical methods is critical to allow us to extract more information without damaging the objects we aim to preserve. The main technique used for organic colorants analysis is chromatography, predominantly (ultra) high-performance LC ([U]HPLC). For organic colorants, photo diode array (PDA) is the detection technique of choice (1). For those components that cannot be identified based on retention time and PDA spectra, we are increasingly turning to MS. In particular, the sensitivity and high resolution of the Orbitrap MS offers new possibilities.

The chemical variety of organic colorants is huge and, to improve separation power, comprehensive 2D-LC techniques are being introduced. We use ion-exchange chromatography in the first dimension to separate dyes based on charge, followed by a second separation using ion-pair reversed-phase chromatography and detection by both PDA and quadrupole TOF-MS (QToFMS). This allows hundreds of colorants to be separated in one run (2). Inorganic materials (used as fixation agents) and can also alter the color of the object. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX) is used to identify the inorganic composition.

Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Author

Maarten van Bommel

Professor of Conservation Science, University of Amsterdam, the Netherlands.

Newsletter

Send me the latest from The Analytical Scientist.

Sign up now

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register