Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2023 / Aug / Below the Surface
Mass Spectrometry Clinical Environmental Food, Beverage & Agriculture

Below the Surface

DESI-MSI analysis of maize roots could lead to new strategies to control plant growth amidst climate change

By Jessica Allerton 09/01/2023 1 min read

Share

Digging deeper into how plants develop can help scientists learn more about organism growth – at least that's what researchers from the University of California, San Diego, and Stanford University are counting on. Specifically, the team has chemically mapped the development of maize roots to uncover new insights, with the aim of improving plant growth in the face of climate change.

Targeting specific areas of plant tissue, the team applied spray charged droplets to maize roots ahead of desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The team found hundreds of small molecules with different spatial distribution patterns across the developing tissue, as well as different enrichment patterns and functions of citric acid cycle metabolites during root development.

“We were surprised by how many unidentified molecules are enriched in developing roots,” says Jazz Dickinson, a faculty member in the Department of Cell and Developmental Biology, University of California San Diego. “With this new information we can develop chemical and genetic strategies to control plant growth.”

Richard Zare at Stanford University, co-author of this study, emphasizes the importance of collaboration between the two universities. “I cannot emphasize enough the synergy of this study. I don’t have the background in plant biology to perform this analysis without Jazz and our coworkers. Combining this expertise with my experience with mass spec was crucial in providing a chemical spatial map of plant root development.”

In addition to applying the findings to plant growth, the teams are also exploring other avenues. Surgeons in the Dermatology Department of the Stanford University School of Medicine are hoping to extend the research from maize roots to human skin – allowing scientists to determine if skin blemishes are cancerous or benign before needing to perform a biopsy or undertake surgery. “The preliminary results of this project look quite promising – a triumph of interdisciplinary research that would’ve been impossible to approach alone,” says Zare.

It seems like we could see further applications of DESI-MSI in both nutritional and clinical settings. Dickinson remains hopeful for what the future holds, “This was a true collaboration, and I hope our work inspires others in such efforts!”

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. UC San Diego “Groundbreaking images of root chemicals offer new insights on plant growth” (2023). Available at: http://bitly.ws/Rans. 
  2. T Zhang et al., Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development (2023). DOI: 10.1038/s41467-023-38150-z.

About the Author(s)

Jessica Allerton

Associate Editor, The Analytical Scientist

More Articles by Jessica Allerton

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.