Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data and AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma and Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2023 / Nov / What’s New in Spectroscopy?
Spectroscopy Clinical Environmental Omics Genomics & DNA Analysis Omics Proteomics

What’s New in Spectroscopy?

Talking to trees and discovering chemical signs of extraterrestrial life – all thanks to spectroscopy

By Markella Loi 11/14/2023 3 min read

Share

Are we alone in the universe? In a recent research, a team of astronomers shed light to the question – literally – with NASA’s spectroscopy based James Webb Space Telescope, unveiling the potentially habitable properties of a newly discovered exoplanet, K2-18 b, approximately 120 light-years from Earth. James Webb’s near-infrared imager, slitless spectrograph, and near-infrared spectrograph detected methane and carbon dioxide, without noting any signs of ammonia – implying the presence of liquid water. More tantalizing still, the team found signs of dimethyl sulfide (DMS), which on Earth is only produced by life. “This result was only possible because of the extended wavelength range and unprecedented sensitivity of Webb, which enabled robust detection of spectral features with just two transits,” said principal author Nikku Madhusudhan in a press release. 

Spectral assistant. Nerve repair surgery could be enhanced with multispectral photoacoustic imaging, according to the findings of a study conducted by researchers at The Johns Hopkins University, USA. The researchers were able to visualize and differentiate lipid-rich nerves from surrounding water-containing and lipid-deficient tissues and materials, which could aid surgical decision making. “Photoacoustic imaging using the optimal wavelengths identified and demonstrated for nerves holds promise for detection of myelination in exposed and isolated nerve tissue during a nerve repair surgery, with possible future implications for other surgeries and other optics-based technologies,” concluded the authors.

Credit: Webb Reveals Intricate Details in the Remains of a Dying Star (NIRCam image) by ESA/Webb, NASA, CSA, M. Barlow (University College London), N. Cox (ACRI-ST), R. Wesson (Cardiff University) / CC BY

Talking trees. It might be celtic folklore that trees can whisper, but a research group from the University of Cambridge “spoke” with plants to uncover their biomolecular processes. Highlighter – a biosensor conveying a synthetic, light-gated gene expression system – was developed to trigger and translate optogenetic signals of protein expression in plants under stress – providing insights into plant immunity. The photoswitching technology was evaluated and adapted following spectroscopic analysis to define the light conditions necessary for optogenetic gene expression control. “A growing toolbox for plants, with diverse optical properties, also opens exciting opportunities for crop improvement. For example, in the future we could use one light condition to trigger an immune response, and then a different light condition to precisely time a particular trait, such as flowering or ripening,” said  corresponding author Alexander Jones in the press release.  

Dinosaur or the egg? Modern day birds have evolved from dinosaurs, but several questions remain unanswered as to what molecular changes occurred to enable this transition. Researchers from the University College Cork, Ireland, employed infrared and sulfur X-ray spectroscopy coupled with controlled taphonomic experiments to analyze Mesozoic feathers. They found that feather corneous beta proteins (CBPs) gradually adapted to α-helices. This molecular alteration ensured the survival of CBPs against thermal maturation – indicating that dinosaurs had similar feathers to modern birds.


Diamond materials are, in principle, suitable for use as photoelectrodes that could use sunlight to convert greenhouse gasses into less harmful compounds, according to analysis involving four different X-ray and UV-vis spectroscopy methods. Link

High-resolution NMR spectroscopy coupled with computer simulations enables scientists to simultaneously characterize dynamic and structural properties of multi-domain proteins for the first time. Link 

Researchers at Aston University, UK, use a benchtop NMR spectrometer to analyze pyrolysis bio-oils – demonstrating that NMR analysis can be “easier and more accessible to potential users.” Link

Study employing protein spectroscopy, electron microscopy, and chromatography unveils the role of the ancient protein family serum amyloid A (SAA) in host defense and lipid clearance in pathologic amyloid formation. Link 

Confocal line-scan Raman micro-spectroscopy system used to rapidly detect microplastics below 200 nm and with 1–2 orders of magnitude faster imaging speed compared with point confocal Raman technology. Link

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Markella Loi

Associate Editor, The Analytical Scientist

More Articles by Markella Loi

False

Advertisement

Recommended

False

Related Content

The Analytical Scientist Innovation Awards 2024: #3
Spectroscopy
The Analytical Scientist Innovation Awards 2024: #3

December 6, 2024

4 min read

Bruker’s multiphoton microscopy module, OptoVolt, ranks third in our Innovation Awards. Here, Jimmy Fong, product development lead, walks us through the major moments during development.

More Bang for Your Buck
Spectroscopy
More Bang for Your Buck

December 4, 2024

1 min read

Researchers develop more stable catalysts for dry reforming of methane – a promising method for carbon capture and utilization (CCU)

The Analytical Scientist Innovation Awards 2024: #1
Spectroscopy
The Analytical Scientist Innovation Awards 2024: #1

December 10, 2024

2 min read

And the technology ranked first in our 2024 Innovation Awards is…

The Analytical Scientist Innovation Awards 2024
Spectroscopy
The Analytical Scientist Innovation Awards 2024

December 11, 2024

10 min read

Meet the products – and the experts – defining analytical innovation in 2024

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.