Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Techniques & Tools Sample Preparation, Spectroscopy, Sensors, Data Analysis, Food, Beverage & Agriculture, Chemical, Polymers, Liquid Chromatography, Gas Chromatography, Preparative/Process Chromatography

Characterizing polysaccharide structure with SEC-MALS and intrinsic viscosity measurements

sponsored by Malvern Panalytical


The physical properties and behavior of polymers and polysaccharides depends strongly on the properties of the molecules themselves.  Molecular weight and molecular weight distribution, molecular size and structure all affect how the material will behave.  Gel-permeation chromatography (GPC), also called size-exclusion chromatography (SEC), is the most commonly used tool for assessing these parameters.

The principle of GPC involves separating the sample as it travels through a porous but inert column matrix.  While smaller molecules penetrate the pores more deeply, larger molecules are excluded and thus travel through the column faster.  The result is a separation based on hydrodynamic volume but the desire is to know the molecular weight of the sample.  Previously, molecular weight was estimated by comparing the elution time of the sample to that of standards of known molecular weight.  Now, however, a light scattering detector is a common tool that allows polymer molecular weight to be measured independently of retention time.  The concurrent measurement of Rg using multi-angle light scattering (MALS) and intrinsic viscosity offers exceptional insight into the structure of synthetic and natural polymer molecules as well as their molecular weight.

 The Viscotek SEC-MALS 20 (figure 1) is a 20 angle light scattering device capable of making measurements of molecular weight and Rg (radius of gyration).  It can be used as part of a multi-detector GPC system that combines light scattering with other detectors such as refractive index (RI), ultraviolet (UV) and intrinsic viscosity (IV) to generate a large amount of information about a sample simultaneously.

Subscribe to The Analytical Scientist Newsletters

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine