Cookies

Like most websites The Analytical Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Techniques & Tools Gas Chromatography, Liquid Chromatography, Mass Spectrometry, Capillary Electrophoresis

Texas Reflections

Get with the Program

With Tadeusz Górecki, Professor, University of Waterloo, Canada.


What's the latest from your lab?
We are continuing our efforts to develop a practical system for temperature programming of the second-dimension column in GC×GC, which can increase the 2D peak capacity by as much as 50 percent. We have developed a universal system in which a single metal 2D column serves three roles, as separation column, heater, and temperature sensor.

What are the key trends in GC×GC?
After a long period of relative stagnation, several new modulators have been introduced recently. While none of them are truly ground-breaking, they provide the users with more options. Plus, there are numerous interesting applications of GC×GC, as well as further advances in data handling and processing.

What challenges face your field? 
The perceived complexity of the technique makes many users shy away from it, not helped by the difficulties with handling and processing huge data files. While GC×GC can produce a lot of data in a short time, extracting useful information from these data is not easy. On top of that, many users spend very little time on optimizing the separation itself. This can only be overcome by education on the one hand, and advanced “big data” techniques (involving artificial intelligence) on the other.

Predictions and aspirations?
It is more a dream than a prediction, but within my lifetime I would like to see GC×GC used for the most challenging samples in every gas chromatographic laboratory. As for my research, the goal has always been to provide the users with better tools to perform GC×GC separations, and I plan to carry on doing this until I retire.
 

Read the full article now

Log in or register to read this article in full and gain access to The Analytical Scientist’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Authors

Tadeusz Górecki

Tadeusz Górecki, Professor, University of Waterloo, Ontario, Canada.


James Grinias

James Grinias is an Assistant Professor at the Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.


Peter Tranchida

Peter Tranchida is an Associate Professor at the University of Messina, Italy. A food chemist, he has a great passion for separation science. Peter is a proponent and practitioner of multidimensional chromatography – and often adds a third, mass spectrometric, dimension. He believes these powerful methods can provide new insights into old samples, and help unravel the composition of complex food samples. “After each analysis,” Peter says, “I feel like a child opening up a Christmas present.”


Pierre-Hugues Stefanuto

Pierre-Hugues Stefanuto is a Marie-Curie postdoctoral fellow at Dartmouth College.


Michelle L Kovarik

Assistant Professor, Trinity College, Hartford, Connecticut, USA.


Katelynn Perrault

Assistant Professor, Chaminade University of Honolulu, Hawaii, USA.

Newsletter

Send me the latest from The Analytical Scientist.

Sign up now

Most Popular

Register to The Analytical Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Analytical Scientist magazine

Register