Metabolomics: the Superglue of Omics

As the profile of metabolomics soars, we offer our thoughts on the future of the field.

By Martin Giera, Mary E. Spilker and Gary Siuzdak

February 2018

Our understanding of cellular and molecular processes has increased exponentially during the last century. Several key questions about the function of our cells and, to a broader extent, their interactions with entire organisms have been answered, with the most prominent findings being the elucidation of our DNA structure and the sequencing of the human genome (1). The key outcome of 20th century biomedical and biological research was the knowledge we gained about the coding, content and flow of information within our cells and body. The concept that our cells contain our hereditary information in the form of DNA, which is transcribed into RNA and translated into proteins that are ultimately involved in the modulation of our metabolome is the central dogma of biology, and a comprehensive understanding of this process represents the fundamental goal of omics technologies (2).

But beyond a better understanding of ourselves, what has been the impact of these findings and technologies on our lives? Genomics (DNA sequencing) has certainly enhanced diagnosis and treatment of inborn errors and hereditary diseases. Transcriptomics (the analysis of RNA transcripts) complements genomics by allowing us to decipher gene expression, again helping to identify undiagnosed cases of genetic diseases. Proteomics (the comprehensive analysis of an organism’s proteins) would ideally complement genomics and transcriptomics; however, several ongoing analytical challenges are still hampering comprehensive protein analysis. Nevertheless, we believe advances in proteomics happening today will allow for a more efficient use of proteomics tomorrow, so that it may become a complementary diagnostic approach to other omics techniques (3).