Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2021 / Feb / The Buzz About (Prote)Omics
Omics Proteomics

The Buzz About (Prote)Omics

Is it time for proteomics to take a spotlight in scientific engagement?

By Jennifer Van Eyk, John Yates 02/05/2021 1 min read

Share

Protein biochemistry tells a tale of diverse protein function. These roles – which range from structural stability to catalysis – are not the only source of variability surrounding these molecules, though. Proteins can also be present in vastly differing amounts, and can be altered in terms of their amino acid sequence and co- and post-translational modifications; the depth of the known proteome covers over 10,000 quantified proteins and 10,00010 proteoforms.

With the above in mind, it’s probably no surprise to hear that capturing protein complexity with accuracy and high throughput is a great challenge. Yet, the technologies behind proteomics are geared to capture this immense landscape of complexity. In fact, the past five years have ushered in many proteomics advances, leading to improved protein coverage, sensitivity, and throughput; we can now cover extremes from single-cell analyses to the processing of hundreds of samples in a single day.

Most excitingly, proteomics, despite its maturity, continues to grow in new ways. As an example: top-down proteomics approaches are expanding to capture the functionally important patterns of protein post-translational modifications. Further examples: the ways in which we can probe three-dimensional protein structure in vivo (important for determining structural changes as a function of disease) are improving; quantification of a protein interaction partners in cells is leading to growing acknowledgement that proteins can choose to stay at home or travel the world; and single-cell proteomics is emerging as a serious tool for studying cell differentiation, evolution, and interactions. 

What’s more, high-throughput methods with automated and highly QCed workflows are allowing proteomics to boom into a large-scale human population science. In these cases, we can conduct consistent analyses of thousands of samples. Using such methods, we are able to study our natural history, disease progression, and responses to therapies (Amanda Hummon discusses a more personalized approach to the latter application here).

The future is bright, but there’s still some space for improvement and innovation in our toolbox. Proteomics promises to answer burning questions about mechanisms in biology, and increased ease of application means that the proteomics buzz continues to grow. Along with other omics approaches (think metabolomics and lipidomics; see “Gurus of Omics”), previously untold knowledge regarding genetic, metabolomic, and environmental influences lies in wait. Perhaps that’s why The Analytical Scientist team was so keen to devote the February issue to the magic of omics… Let’s explore!

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Jennifer Van Eyk

Director of the Advanced Clinical Biosystems Research Institute and the Precision Biomarker Laboratories at Cedars-Sinai Medical Center, Los Angeles, California, USA

More Articles by Jennifer Van Eyk

John Yates

John Yates is Ernest W. Hahn Professor of Chemical Physiology and Molecular and Cellular Neurobiology at Scripps Research, LaJolla, California, USA. He was recently named Editor of the Journal of Proteome Research. 

More Articles by John Yates

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.